【題目】如圖,在△ABC紙板中,AC=4,BC=2,AB=5,P是AC上一點,過點P沿直線剪下一個與△ABC相似的小三角形紙板,如果有4種不同的剪法,那么AP長的取值范圍是__.
科目:初中數(shù)學 來源: 題型:
【題目】某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數(shù)關系式,并求出自變量x的取值范圍;
(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)和二次函數(shù)圖象的頂點分別為M、N ,與x軸分別相交于A、B兩點(點A在點B的左邊)和C、D兩點(點C在點D的左邊),
(1))函數(shù)的頂點坐標為 ;當二次函數(shù)L1 ,L2 的值同時隨著的增大而增大時,的取值范圍是 ;
(2)當AD=MN時,求的值,并判斷四邊形AMDN的形狀(直接寫出,不必證明);
(3)當B,C是線段AD的三等分點時,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為3,以點A為圓心,1為半徑作圓,E是⊙A上的任意一點,將DE繞點D按逆時針旋轉(zhuǎn)90°,得到DF,連接AF,則AF的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A,B兩點,且點A在點B的左側(cè),直線y=﹣x﹣1與拋物線交于A,C兩點,其中點C的橫坐標為2.
(1)求二次函數(shù)的解析式;
(2)P是線段AC上的一個動點,過點P作y軸的平行線交拋物線于點E,求線段PE長度的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《基礎教育課程改革綱要》要求每位學生每學年都要參加社會實踐活動。某學校組織了一次戶外攀巖活動,如圖,攀巖墻體近似看作垂直于地面,一學生攀到D點時,距離地面B點3.6米,該學生繼續(xù)向上很快就攀到頂點E。在A處站立的帶隊老師拉著安全繩,分別在點D和點E測得點C的俯角是45°和60°,帶隊老師的手C點距離地面1.6米,請求出攀巖的頂點E距離地面的高度為多少米?(結(jié)果可保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC三個頂點的坐標分別是A(2,2),B(4,0),C(4,﹣4).
(1)請在圖中,畫出△ABC向左平移6個單位長度后得到的△A1B1C1;
(2)以點O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請在圖中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,平行四邊形ABOC如圖放置,將此平行四邊形繞點O順時針旋轉(zhuǎn)90°得到平行四邊形A′B′OC′.拋物線y=﹣x2+2x+3經(jīng)過點A、C、A′三點.
(1)求A、A′、C三點的坐標;
(2)求平行四邊形ABOC和平行四邊形A′B′OC′重疊部分△C′OD的面積;
(3)點M是第一象限內(nèi)拋物線上的一動點,問點M在何處時,△AMA′的面積最大?最大面積是多少?并寫出此時M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)和反比例函數(shù)y=(m≠0)分別交于點A(4,1),B(﹣1,a)
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象直接寫出kx+b>的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com