三邊長分別為2m2+2m,2m+1,2m2+2m+1(m>0)的三角形是

[  ]

A.直角三角形
B.等腰三角形
C.等邊三角形
D.都不是
答案:A
解析:

=[()+()]·[()-()]=

=

+=

∴此三角形是直角三角形.

選A.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

問題背景:
在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
、
13
,求這個三角形的面積.
小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上
 
;
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.若△ABC三邊的長分別為
5
a
、2
2
a
、
17
a
(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積;
探索創(chuàng)新:
(3)若△ABC三邊的長分別為
m2+16n2
、
9m2+4n2
、2
m2+n2
(m>0,n>0,且m≠n),試運(yùn)用構(gòu)圖法求出這三角形的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個三角形的三邊長分別為
16m2+n2
,
4m2+9n2
,2
m2+n2
,(
n
m
>0),則這個三角形的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題背景:
在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
13
,求這個三角形的面積.
小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.我們把上述求△ABC面積的方法叫做構(gòu)圖法.
(1)若△ABC三邊的長分別為
5
a,2
2
a,
17
a
(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積.
思維拓展:
(2)若△ABC三邊的長分別為
m2+16n2
9m2+4n2
,2
m2+n2
(m>0,n>0,且m≠n),試運(yùn)用構(gòu)圖法求出這三角形的面積.
探索創(chuàng)新:
(3)已知a、b都是正數(shù),a+b=3,求當(dāng)a、b為何值時
a2+4
+
b2+25
有最小值,并求這個最小值.
(4)已知a,b,c,d都是正數(shù),且a2+b2=c2,c
a2-d2
=a2,求證:ab=cd.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題:在△ABC中,AB、BC、AC三邊的長分別為
2
、
13
、
17
,求這個三角形的面積.
小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖所示,這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.

(1)請你將△ABC的面積直接填寫在橫線上
5
2
5
2

(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.若△ABC三邊的長分別為
2
a、2
5
a、
26
a
(a>0),請利用圖2的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積是:
3a2
3a2

(3)若△ABC三邊的長分別為
4m2+n2
、
16m2+n2
、2
m2+n2
(m>0,n>0,m≠n),請運(yùn)用構(gòu)圖法在圖3指定區(qū)域內(nèi)畫出示意圖,并求出△ABC的面積為:
4mn
4mn

查看答案和解析>>

同步練習(xí)冊答案