【題目】二次函數(shù)y=x2+bx的圖象如圖,對(duì)稱軸為直線x=1,若關(guān)于x的一元二次方程x2+bx﹣t=0(t為實(shí)數(shù))在﹣1<x<4的范圍內(nèi)有解,則t的取值范圍是( )
A.t≥﹣1
B.﹣1≤t<3
C.﹣1≤t<8
D.3<t<8
【答案】C
【解析】解:對(duì)稱軸為直線x=﹣ =1, 解得b=﹣2,
所以,二次函數(shù)解析式為y=x2﹣2x,
y=(x﹣1)2﹣1,
x=﹣1時(shí),y=1+2=3,
x=4時(shí),y=16﹣2×4=8,
∵x2+bx﹣t=0相當(dāng)于y=x2+bx與直線y=t的交點(diǎn)的橫坐標(biāo),
∴當(dāng)﹣1≤t<8時(shí),在﹣1<x<4的范圍內(nèi)有解.
故選:C.
根據(jù)對(duì)稱軸求出b的值,從而得到x=﹣1、4時(shí)的函數(shù)值,再根據(jù)一元二次方程x2+bx﹣t=0(t為實(shí)數(shù))在﹣1<x<4的范圍內(nèi)有解相當(dāng)于y=x2+bx與y=t在x的范圍內(nèi)有交點(diǎn)解答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(原題)已知直線AB∥CD,點(diǎn)P為平行線AB,CD之間的一點(diǎn).如圖1,若∠ABP=50°,∠CDP=60°,BE平分∠ABP,DE平分∠CDP,求∠BED的度數(shù).
(探究)如圖2,當(dāng)點(diǎn)P在直線AB的上方時(shí),若∠ABP=α,∠CDP=β,∠ABP和∠CDP的平分線交于點(diǎn)E1,∠ABE1與∠CDE1的角平分線交于點(diǎn)E2,∠ABE2與∠CDE2的角平分線交于點(diǎn)E3,…以此類推,求∠En的度數(shù).
(變式)如圖3,∠ABP的角平分線的反向延長(zhǎng)線和∠CDP的補(bǔ)角的角平分線交于點(diǎn)E,試猜想∠P與∠E的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了考查一種零件的加工精度,從中抽出40只進(jìn)行檢測(cè),其尺寸數(shù)據(jù)如下(單位:微米):
161,165,164,166,160,158,163,162,168,159,
147,165,167,151,164,159,152,159,149,172,
162,157,162,169,156,164,163,157,163,165,
173,159,157,169,165,154,153,163,168,169.
試列出樣本頻數(shù)及頻率分布表,繪制頻數(shù)分布直方圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的對(duì)角線AC,BD交于點(diǎn)O,過點(diǎn)B作BP∥AC,過點(diǎn)C作CP∥BD,BP與CP相交于點(diǎn)P.
(1)判斷四邊形BPCO的形狀,并說明理由;
(2)若將平行四邊形ABCD改為菱形ABCD,其他條件不變,得到的四邊形BPCO是什么四邊形,并說明理由;
(3)若得到的是正方形BPCO,則四邊形ABCD是 .(選填平行四邊形、矩形、菱形、正方形中你認(rèn)為正確的一個(gè))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
第1個(gè)等式:a1==﹣;
第2個(gè)等式:a2==﹣;
第3個(gè)等式:a3==﹣;
第4個(gè)等式:a4==﹣.
按上述規(guī)律,回答以下問題:
(1)用含n的代數(shù)式表示第n個(gè)等式:an=_____=_____;
(2)式子a1+a2+a3+…+a20=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料.
點(diǎn)M,N在數(shù)軸上分別表示數(shù)m和n,我們把m,n之差的絕對(duì)值叫做點(diǎn)M,N之間的距離,即MN=|m﹣n|.如圖,在數(shù)軸上,點(diǎn)A,B,O,C,D的位置如圖所示,則DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.
(1)OA= ,BD= ;
(2)|1﹣(﹣4)|表示哪兩點(diǎn)的距離?
(3)點(diǎn)P為數(shù)軸上一點(diǎn),其表示的數(shù)為x,用含有x的式子表示BP= ,當(dāng)BP=4時(shí),x= ;當(dāng)|x﹣3|+|x+2|的值最小時(shí),x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國(guó)慶期間,為了滿足百姓的消費(fèi)需求,某商店計(jì)劃用170000元購進(jìn)一批家電,這批家電的進(jìn)價(jià)和售價(jià)如表:
類別 | 彩電 | 冰箱 | 洗衣機(jī) |
進(jìn)價(jià)(元/臺(tái)) | 2000 | 1600 | 1000 |
售價(jià)(元/臺(tái)) | 2300 | 1800 | 1100 |
若在現(xiàn)有資金允許的范圍內(nèi),購買表中三類家電共100臺(tái),其中彩電臺(tái)數(shù)是冰箱臺(tái)數(shù)的2倍,設(shè)該商店購買冰箱x臺(tái).
(1)商店至多可以購買冰箱多少臺(tái)?
(2)購買冰箱多少臺(tái)時(shí),能使商店銷售完這批家電后獲得的利潤(rùn)最大?最大利潤(rùn)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=∠D=90°,∠BAD=105°,在BC,CD上分別找一點(diǎn)M、N,使得△AMN周長(zhǎng)最小,則∠AMN+∠ANM的度數(shù)為 ( )
A. 100° B. 105° C. 120° D. 150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,直線AB:y=﹣x+b交x軸于點(diǎn)A(8,0),交y軸正半軸于點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo);
(2)如圖2,直線AC交y軸負(fù)半軸于點(diǎn)C,AB=BC,P為線段AB上一點(diǎn),過點(diǎn)P作y軸的平行線交直線AC于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段PQ的長(zhǎng)為d,求d與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,M為CA延長(zhǎng)線上一點(diǎn),且AM=CQ,在直線AC上方的直線AB上是否存在點(diǎn)N,使△QMN是以QM為斜邊的等腰直角三角形?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo)及PN的長(zhǎng)度;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com