正方形ABCD的邊長(zhǎng)為1,AB、AD上各有一點(diǎn)P、Q,如果的周長(zhǎng)為2,求的度數(shù)。

 

 

【答案】

45°.

【解析】

試題分析:首先從△APQ的周長(zhǎng)入手求出PQ=DQ+BP,然后將△CDQ逆時(shí)針旋轉(zhuǎn)90°,使得CD、CB重合,然后利用全等來解.

試題解析:如圖所示,

△APQ的周長(zhǎng)為2,即AP+AQ+PQ=2①,

正方形ABCD的邊長(zhǎng)是1,即AQ+QD=1,AP+PB=1,

∴AP+AQ+QD+PB=2②,

①-②得,PQ-QD-PB=0,

∴PQ=PB+QD.

延長(zhǎng)AB至M,使BM=DQ.連接CM,△CBM≌△CDQ(SAS),

∴∠BCM=∠DCQ,CM=CQ,

∵∠DCQ+∠QCB=90°,

∴∠BCM+∠QCB=90°,即∠QCM=90°,

PM=PB+BM=PB+DQ=PQ.

在△CPQ與△CPM中,

CP=CP,PQ=PM,CQ=CM,

∴△CPQ≌△CPM(SSS),

∴∠PCQ=∠PCM=∠QCM=45°.

考點(diǎn):(1)正方形的性質(zhì);(2)全等三角形的判定與性質(zhì).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)附加題
如圖所示,正方形ABCD的邊長(zhǎng)為7,AE=BF=CG=DH=3,甲、乙兩只螞蟻同時(shí)從A點(diǎn)出發(fā),甲螞蟻以每秒
3
5
的速度沿路線AE→EF→FG→GH→HE→EB→BC→CD→DA循環(huán)爬行;乙螞蟻以每秒
4
5
的速度沿路線AH→HG→GF→FE→EH→HD→DC→CB→BA循環(huán)爬行.那么出發(fā)后兩只螞蟻在第
 
s第一次相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD的邊長(zhǎng)為4,P為對(duì)角線AC上一點(diǎn),且CP=3
2
,PE⊥PB交CD于點(diǎn)E,則PE=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

正方形ABCD的邊長(zhǎng)為4,P是BC上一動(dòng)點(diǎn),QP⊥AP交DC于Q,設(shè)PB=x,△ADQ的面積為y.
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)(1)中函數(shù)若是一次函數(shù),求出直線與兩坐標(biāo)軸圍成的三角形面積;若是二次函數(shù),請(qǐng)利用配方法求出拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo);
(3)畫出這個(gè)函數(shù)的圖象;
(4)點(diǎn)P是否存在這樣的位置,使△APB的面積是△ADQ的面積的
23
?若存在,求出BP的長(zhǎng);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊長(zhǎng)為12cm,E為CD邊上一點(diǎn),DE=5cm.以點(diǎn)A為中心,將△ADE按順時(shí)針方向旋轉(zhuǎn)得△ABF,則點(diǎn)E所經(jīng)過的路徑長(zhǎng)為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)M在邊DC上,M,N兩點(diǎn)關(guān)于對(duì)角線AC對(duì)稱,若DM=2,則tan∠ADN=
3
2
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案