【題目】感知:如圖1,在中,DE分別是AB、AC兩邊的中點(diǎn),延長(zhǎng)DE至點(diǎn)F,使,連結(jié)易知

探究:如圖2,AD的中線,BEAC于點(diǎn)E,交AD于點(diǎn)F,且,求證:

應(yīng)用:如圖3,在中,,,,DE的中位線過(guò)點(diǎn)D、E,分別交邊BC于點(diǎn)F、G,過(guò)點(diǎn)A,分別與FDGE的延長(zhǎng)線交于點(diǎn)M、N,則四邊形MFGN周長(zhǎng)C的取值范圍是______

【答案】(1)探究:證明見詳解 (2)應(yīng)用:

【解析】

(1)探究:如圖,延長(zhǎng)AD至點(diǎn)M,使,連接MC,根據(jù)題意有,得到,,然后因?yàn)?/span>,,所以,即.

(2)應(yīng)用:由題意知四邊形MFGN是平行四邊形,因?yàn)?/span>的中位線,所以MN=FG=DE,故當(dāng)NGBC是四邊形MFGN周長(zhǎng)C的值最小,當(dāng)NGAC重合時(shí)四邊形MFGN周長(zhǎng)C最大,分別求出最大最小值即可.

(1)探究:如圖2,延長(zhǎng)AD至點(diǎn)M,使,連接MC,

中,,

,,

,

,

,

;

(2)應(yīng)用:解:如圖3

,

四邊形MFGN是平行四邊形,

,,

的中位線,

,

,

四邊形MFGN周長(zhǎng),

時(shí),MF最短,

即:四邊形MFGN的周長(zhǎng)最小,

過(guò)點(diǎn)AH

,

中,,

,,

,

,

四邊形MFGN的周長(zhǎng)C最小為,

四邊形MFGN的周長(zhǎng)C最大為如圖

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖鋼架中,∠A=,焊上等長(zhǎng)的鋼條P1P2, P2P3, P3P4, P4P5……來(lái)加固鋼架.P1A= P1P2,且恰好用了4根鋼條,α的取值范圈是( )

A.15°≤ a <18°

B.15°< a ≤18°

C.18°≤ a <22.5°

D.18° < a ≤ 22.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,一次函數(shù)y=kx+bk、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=n為常數(shù)且n≠0)的圖象在第二象限交于點(diǎn)CCDx軸,垂直為D,若OB=2OA=3OD=6

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)求兩函數(shù)圖象的另一個(gè)交點(diǎn)坐標(biāo);

3)直接寫出不等式;kx+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,DAB延長(zhǎng)線上一點(diǎn),點(diǎn)EBC邊上,且BE=BD,連結(jié)AEDE、DC

①求證:△ABE≌△CBD

②若∠CAE=30°,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計(jì)劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問(wèn)卷調(diào)查每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門對(duì)調(diào)查結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:

本次調(diào)查的學(xué)生共有______人,在扇形統(tǒng)計(jì)圖中,m的值是______

分別求出參加調(diào)查的學(xué)生中選擇繪畫和書法的人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整.

該校共有學(xué)生2000人,估計(jì)該校約有多少人選修樂器課程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如圖1,在平面直角坐標(biāo)系中,點(diǎn)M是二次函數(shù)圖象上一點(diǎn),過(guò)點(diǎn)M軸,如果二次函數(shù)的圖象與關(guān)于l成軸對(duì)稱,則稱關(guān)于點(diǎn)M的伴隨函數(shù)如圖2,在平面直角坐標(biāo)系中,二次函數(shù)的函數(shù)表達(dá)式是,點(diǎn)M是二次函數(shù)圖象上一點(diǎn),且點(diǎn)M的橫坐標(biāo)為m,二次函數(shù)關(guān)于點(diǎn)M的伴隨函數(shù).

,

的函數(shù)表達(dá)式.

點(diǎn),在二次函數(shù)的圖象上,若,a的取值范圍為______

過(guò)點(diǎn)M軸,

如果,線段MN的圖象交于點(diǎn)P,且MP3,求m的值.

如圖3,二次函數(shù)的圖象在MN上方的部分記為,剩余的部分沿MN翻折得到,由所組成的圖象記為.以、為頂點(diǎn)在x軸上方作正方形直接寫出正方形ABCDG有三個(gè)公共點(diǎn)時(shí)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,的延長(zhǎng)線與相交于點(diǎn),連接

如圖,若

求證:;②猜想線段、的數(shù)量關(guān)系,并證明你的猜想;

如圖,若,為常數(shù)),求的值(用含、的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D,E分別在正ABC的邊ABBC上,且BDCE,CDAE交于點(diǎn)F

1)①求證:ACE≌△CBD;②求∠AFD的度數(shù);

2)如圖2,若DE,MN分別是ABC各邊上的三等分點(diǎn),BM,CD交于Q.若ABC的面積為S,請(qǐng)用S表示四邊形ANQF的面積   

3)如圖3,延長(zhǎng)CD到點(diǎn)P,使∠BPD30°,設(shè)AFa,CFb,請(qǐng)用含a,b的式子表示PC長(zhǎng),并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,中,,

點(diǎn)從點(diǎn)開始沿邊向的速度移動(dòng),點(diǎn)點(diǎn)開始沿邊向點(diǎn)的速度移動(dòng).如果、分別從,同時(shí)出發(fā),線段能否將分成面積相等的兩部分?若能,求出運(yùn)動(dòng)時(shí)間;若不能說(shuō)明理由.

點(diǎn)沿射線方向從點(diǎn)出發(fā)以的速度移動(dòng),點(diǎn)沿射線方向從點(diǎn)出發(fā)以的速度移動(dòng),、同時(shí)出發(fā),問(wèn)幾秒后,的面積為?

查看答案和解析>>

同步練習(xí)冊(cè)答案