【題目】如圖1,在平面直角坐標(biāo)系中,直線與坐標(biāo)軸交于A,B兩點(diǎn),以AB為斜邊在第一象限內(nèi)作等腰直角三角形ABC,點(diǎn)C為直角頂點(diǎn),連接OC.
(1)直接寫(xiě)出= ;
(2)請(qǐng)你過(guò)點(diǎn)C作CE⊥y軸于E點(diǎn),試探究OB+OA與CE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點(diǎn)M為AB的中點(diǎn),點(diǎn)N為OC的中點(diǎn),求MN的值;
(4)如圖2,將線段AB繞點(diǎn)B沿順時(shí)針?lè)较蛐D(zhuǎn)至BD,且OD⊥AD,延長(zhǎng)DO交直線于點(diǎn)P,求點(diǎn)P的坐標(biāo).
【答案】(1) 4;(2)OB+OA=2CE;見(jiàn)解析;(3)MN=;(4)P(,).
【解析】
(1)令x=0,求出y的值,令y=0,求出x的值,即可得出OA,OB的長(zhǎng),根據(jù)三角形面積公式即可求出結(jié)果;
(2)過(guò)點(diǎn)C作CF⊥x軸,垂足為點(diǎn)F,易證△CEB≌△CFA與四邊形CEOF是正方形,從而得AF=BE,CE=BE=OF,由OB=OE-BE,AO=OF+AF可得結(jié)論;
(3)求出C點(diǎn)坐標(biāo),利用中點(diǎn)坐標(biāo)公式求出點(diǎn)M,N的坐標(biāo),進(jìn)而用兩點(diǎn)間的距離公式求解即可得出結(jié)論;
(4)先判斷出點(diǎn)B是AQ的中點(diǎn),進(jìn)而求出Q的坐標(biāo),即可求出DP的解析式,聯(lián)立成方程組求解即可得出結(jié)論.
(1)∵直線y=-x+2交坐標(biāo)軸于A,B兩點(diǎn),
令x=0,則y=2,令y=0,則x=4,
∴BO=2,AO=4,
∴=;
(2)作CF⊥x軸于F,作CE⊥y軸于E,如圖,
∴∠BFC=∠AEC=90°
∵∠EOF=90°,
∴四邊形OECF是矩形,
∴CF=OE,CE=OF,∠ECF=90°,
∵∠ACB=90°
∴∠BCF=∠ACE,
∵BC=AC,
∴△CFB≌△CEA,
∴CF=CE,AF=BE,
∴四邊形OECF是正方形,
∴OE=OF=CE=CF,
∴OB=OE-BE,OA=OF+AF,
∴OB+OA=OE+OF=2CE;
(3)由(2)得CE=3,
∴OE=3,
∴OF=3,
∴C(3,3);
∵M是線段AB的中點(diǎn),而A(4,0),B(0,2),
∴M(2,1),
同理:N(,),
∴MN=;
(3)如圖②延長(zhǎng)AB,DP相交于Q,
由旋轉(zhuǎn)知,BD=AB,
∴∠BAD=∠BDA,
∵AD⊥DP,
∴∠ADP=90°,
∴∠BDA+∠BDQ=90°,∠BAD+∠AQD=90°,
∴∠AQD=∠BDQ,∴BD=BQ,
∴BQ=AB,
∴點(diǎn)B是AQ的中點(diǎn),
∵A(4,0),B(0,2),
∴Q(-4,4),
∴直線DP的解析式為y=-x①,
∵直線DO交直線y=x+5②于P點(diǎn),
聯(lián)立①②解得,x=-,y=,
∴P(-,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某自行車廠一周計(jì)劃生產(chǎn)輛自行車,平均每天生產(chǎn)輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計(jì)劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)為正,減產(chǎn)為負(fù));
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
根據(jù)記錄可知前三天共生產(chǎn)________輛;
產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)________輛;
該廠實(shí)行計(jì)件工資制,每輛車元,超額完成任務(wù)每輛獎(jiǎng)元,少生產(chǎn)一輛扣元,那么該廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,某中學(xué)在2019年元旦前夕,由校團(tuán)委組織全校學(xué)生開(kāi)展了一次書(shū)法比賽為了表彰書(shū)法比賽中的獲獎(jiǎng)學(xué)生,計(jì)劃購(gòu)買鋼筆30支,毛筆20支,共需1070元,其中每支毛筆比鋼筆貴6元.
(1)求鋼筆和毛筆的單價(jià)各為多少元?
(2)后來(lái)校團(tuán)委決定調(diào)整設(shè)獎(jiǎng)方案,擴(kuò)大表彰面,需要購(gòu)買上面的兩種筆共60支(每種筆的單價(jià)不變)張老師做完預(yù)算后,向財(cái)務(wù)處王老師說(shuō):“我這次買這兩種筆需要支領(lǐng)1322元”王老師核算了一下,說(shuō):“如果你用這些錢只買這兩種筆,那么賬肯定算錯(cuò)了.”請(qǐng)你用學(xué)過(guò)的方程知識(shí)解釋:王老師為什么說(shuō)張老師用這些錢只買兩種筆的賬算錯(cuò)了.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是對(duì)角線BD上一點(diǎn),且滿足BE=AD,連接CE并延長(zhǎng)交AD于點(diǎn)F,連接AE,過(guò)B點(diǎn)作BG⊥AE于點(diǎn)G,延長(zhǎng)BG交AD于點(diǎn)H.在下列結(jié)論中:①AH=DF;②∠AEF=45°;③S四邊形EFHG=S△DEF+S△AGH;④BH平分∠ABE.其中不正確的結(jié)論有( 。
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形AOBC中,OB=4,OA=3,分別以O(shè)B,OA所在直線為x軸、y軸建立平面直角坐標(biāo)系,F(xiàn)是BC邊上的點(diǎn),過(guò)F點(diǎn)的反比例函數(shù)y=(k>0)的圖象與AC邊交于點(diǎn)E.若將△CEF沿EF翻折后,點(diǎn)C恰好落在OB上的點(diǎn)D處,則點(diǎn)F的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一般地,任何一個(gè)無(wú)限循環(huán)小數(shù)都可以寫(xiě)成分?jǐn)?shù)形式,如0.=0.777…,它的循環(huán)節(jié)有一位,設(shè)0. =x,由0. =0777…,可知,10x=7.777…,所以10x﹣x=7,得x=.于是,得0. =,再如0.=0.737373…,它的循環(huán)節(jié)有兩位,設(shè)0.=x,由0.=0.737373…可知,100x=73.7373…,所以100x﹣x=73.解方程得x=.于是,得0. =,類比上述方法,無(wú)限循環(huán)小數(shù)0. 3化為分?jǐn)?shù)形式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,E、F在菱形的邊BC,CD上.
(1)證明:BE=CF.
(2)當(dāng)點(diǎn)E,F(xiàn)分別在邊BC,CD上移動(dòng)時(shí)(△AEF保持為正三角形),請(qǐng)?zhí)骄克倪呅蜛ECF的面積是否發(fā)生變化?若不變,求出這個(gè)定值;如果變化,求出其最大值.
(3)在(2)的情況下,請(qǐng)?zhí)骄俊鰿EF的面積是否發(fā)生變化?若不變,求出這個(gè)定值;如果變化,求出其最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙P的圓心坐標(biāo)是(5,a)(a>5),半徑為5,函數(shù)y=x的圖象被⊙P截得的弦AB的長(zhǎng)為8,則a的值是( )
A. 8 B. 5+3 C. 5 D. 5+
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D為AB上一點(diǎn),以CD為直徑的⊙O交BC于點(diǎn)E,連接AE交CD于點(diǎn)P,交⊙O于點(diǎn)F,連接DF,∠CAE=∠ADF.
(1)判斷AB與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若PF:PC=1:2,AF=5,求CP的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com