【題目】如圖,已知拋物線y=ax2+bx+3過(guò)點(diǎn)A(-1,0),B(3,0),點(diǎn)M,N為拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)MMD∥y軸,交直線BC于點(diǎn)D,交x軸于點(diǎn)E.

(1)求拋物線的表達(dá)式;

(2)過(guò)點(diǎn)NNF⊥x軸,垂足為點(diǎn)F,若四邊形MNFE為正方形(此處限定點(diǎn)M在對(duì)稱軸的右側(cè)),求該正方形的面積;

(3)若∠DMN=90°,MD=MN,直接寫出點(diǎn)M的坐標(biāo).

【答案】(1)y=-x2+2x+3;(2)正方形的面積為24+824-8;(3)點(diǎn)M的坐標(biāo)為()或(2,3)或(-1,0)或(,).

【解析】

(1)根據(jù)點(diǎn)在拋物線圖像上,將點(diǎn)代入解析式,待定系數(shù)法解題,

(2)設(shè)點(diǎn)M坐標(biāo)為(m,-m2+2m+3),分別表示出ME=|-m2+2m+3|,MN=2m-2,由四邊形MNFE為正方形得ME=MN,列方程,分類討論即可求解,

(3)先求出直線BC解析式,設(shè)點(diǎn)M的坐標(biāo)為(a,-a2+2a+3),表示出點(diǎn)N和點(diǎn)D坐標(biāo),由MD=MN,列方程,分類討論即可求解.

(1)∵拋物線y=ax2+bx+3過(guò)點(diǎn)A(-1,0),B(3,0),

,

解得:

拋物線解析式為y=-x2+2x+3;

(2)由(1)知,拋物線的對(duì)稱軸為x=-=1,

如圖,設(shè)點(diǎn)M坐標(biāo)為(m,-m2+2m+3),

∴ME=|-m2+2m+3|,

∵M(jìn)、N關(guān)于x=1對(duì)稱,且點(diǎn)M在對(duì)稱軸右側(cè),

點(diǎn)N的橫坐標(biāo)為2-m,

∴MN=2m-2,

四邊形MNFE為正方形,

∴ME=MN,

∴|-m2+2m+3|=2m-2,

分兩種情況:

①當(dāng)-m2+2m+3=2m-2時(shí),解得:m1=、m2=-(不符合題意,舍去),

當(dāng)m=時(shí),正方形的面積為(2-2)2=24-8

②當(dāng)-m2+2m+3=2-2m時(shí),解得:m3=2+,m4=2-(不符合題意,舍去),

當(dāng)m=2+時(shí),正方形的面積為[2(2+)-2]2=24+8;

綜上所述,正方形的面積為24+824-8

(3)設(shè)BC所在直線解析式為y=kx+b,

把點(diǎn)B(3,0)、C(0,3)代入表達(dá)式,得:

,解得:

直線BC的函數(shù)表達(dá)式為y=-x+3,

設(shè)點(diǎn)M的坐標(biāo)為(a,-a2+2a+3),則點(diǎn)N(2-a,-a2+2a+3),點(diǎn)D(a,-a+3),

①點(diǎn)M在對(duì)稱軸右側(cè),即a>1,

|-a+3-(-a2+2a+3)|=a-(2-a),即|a2-3a|=2a-2,

a2-3a≥0,即a≤0a≥3,a2-3a=2a-2,

解得:a=a=<1(舍去);

a2-3a<0,即0<a<3,a2-3a=2-2a,

解得:a=-1(舍去)或a=2;

②點(diǎn)M在對(duì)稱軸左側(cè),即a<1,

|-a+3-(-a2+2a+3)|=2-a-a,即|a2-3a|=2-2a,

a2-3a≥0,即a≤0a≥3,a2-3a=2-2a,

解得:a=-1a=2(舍);

a2-3a<0,即0<a<3,a2-3a=2a-2,

解得:a=(舍去)或a=;

綜上,點(diǎn)M的坐標(biāo)為(,)或(2,3)或(-1,0)或(,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC是⊙O的直徑,BC交O于點(diǎn)D,E是弧CD的中點(diǎn),連接AE交BC于點(diǎn)F,∠ABC=2∠EAC.

(1)求證:AB是⊙O的切線;

(2)若 tanB=,BD=6,求CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,書中有下列問(wèn)題:今有勾五步,股十二步,問(wèn)勾中容方幾何?其意思為今有直角三角形,勾(短直角邊)長(zhǎng)為5步,股(長(zhǎng)直角邊)長(zhǎng)為12步,問(wèn)該直角三角形能容納的正方形邊長(zhǎng)最大是多少步?該問(wèn)題的答案是________步.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】春節(jié)期間,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)甲商品2件和乙商品3件共需270元;購(gòu)進(jìn)甲商品3件和乙商品2件共需230元.

1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?

2)商場(chǎng)決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場(chǎng)需求,需購(gòu)進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請(qǐng)你求出獲利最大的進(jìn)貨方案,并確定最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,點(diǎn)O是邊BC的中點(diǎn),連接DO并延長(zhǎng),交AB延長(zhǎng)線于點(diǎn)E,連接BDEC

(1)求證:四邊形BECD是平行四邊形;

(2)若∠A=50°,則當(dāng)∠BOD= ______ °時(shí),四邊形BECD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出如下問(wèn)題:尺規(guī)作圖:作已知角的角平分線.已知:如圖,∠BAC.求作:∠BAC的角平分線AP.

小欣的作法如下:

(1)如圖,在平面內(nèi)任取一點(diǎn)O;

(2)以點(diǎn)O為圓心,AO為半徑作圓,交射線AB于點(diǎn)D,交射線AC于點(diǎn)E;

(3)連接DE,過(guò)點(diǎn)O作射線OP垂直于線段DE,交⊙O于點(diǎn)P;

(4)過(guò)點(diǎn)P作射線AP.

所以射線AP為所求

根據(jù)小欣設(shè)計(jì)的尺規(guī)作圖過(guò)程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明.

證明:∵OPDE

=______(________________________)(填推理的依據(jù)),

∴∠BAP=______ (________________________)(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,B,C三點(diǎn)在O直徑BD平分∠ABC,過(guò)點(diǎn)DDEAB交弦BC于點(diǎn)E,BC的延長(zhǎng)線上取一點(diǎn)F,使得EFDE

1)求證DF是⊙O的切線

2)連接AFDE于點(diǎn)M, AD4,DE5,DM的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y1=﹣2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=0.下列判斷:

①當(dāng)x>0時(shí),y1>y2; ②當(dāng)x<0時(shí),x值越大,M值越。

③使得M大于2的x值不存在; ④使得M=1的x值是

其中正確的是( 。

  A.①②  B.①④  C.②③  D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D、E、F分別是邊AB、AC、BC的中點(diǎn),且BC=2AF

1)求證:四邊形ADEF為矩形;

2)若∠C=30°、AF=2,寫出矩形ADEF的周長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案