【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出如下問題:尺規(guī)作圖:作已知角的角平分線.已知:如圖,∠BAC.求作:∠BAC的角平分線AP.

小欣的作法如下:

(1)如圖,在平面內(nèi)任取一點(diǎn)O;

(2)以點(diǎn)O為圓心,AO為半徑作圓,交射線AB于點(diǎn)D,交射線AC于點(diǎn)E;

(3)連接DE,過點(diǎn)O作射線OP垂直于線段DE,交⊙O于點(diǎn)P;

(4)過點(diǎn)P作射線AP.

所以射線AP為所求

根據(jù)小欣設(shè)計(jì)的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明.

證明:∵OPDE

=______(________________________)(填推理的依據(jù)),

∴∠BAP=______ (________________________)(填推理的依據(jù)).

【答案】(1)見解析;(2)見解析.

【解析】

(1)根據(jù)所述作圖即可;

(2)根據(jù)垂徑定理進(jìn)行證明回答.

解:(1)作圖如下:

(2);垂直于弦的直徑平分弦,并且平分弦所對(duì)的兩條弧;∠CAP;等弧所對(duì)圓周角相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店計(jì)劃購進(jìn)AB兩種型號(hào)的電動(dòng)自行車共30輛,其中A型電動(dòng)自行車不少于20輛,A、B兩種型號(hào)電動(dòng)自行車的進(jìn)貨單價(jià)分別為2500元、3000元,售價(jià)分別為2800元、3500元,設(shè)該商店計(jì)劃購進(jìn)A型電動(dòng)自行車m輛,兩種型號(hào)的電動(dòng)自行車全部銷售后可獲利潤(rùn)y元.

1)求出ym之間的函數(shù)關(guān)系式;

2)該商店如何進(jìn)貨才能獲得最大利潤(rùn)?此時(shí)最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=mx+b的圖象與反比例函數(shù)y=的圖象交于A(3,1),B(﹣,n)兩點(diǎn).

(1)求該反比例函數(shù)的解析式;

(2)求n的值及該一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

如果兩個(gè)正數(shù)ab,即a0,b0,則有下面的不等式: ,當(dāng)且僅當(dāng)ab時(shí)取等號(hào),我們把叫做正數(shù)a,b的算術(shù)平均數(shù),把叫做正數(shù)a,b的幾何平均數(shù),于是上述的不等式可以表述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)他們的幾何平均數(shù).它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最大(小)值問題的有力工具.

實(shí)例剖析:

已知x0,求式子的最小值.

解:令ax,b,則由,得當(dāng)且僅當(dāng)時(shí),方程兩邊同時(shí)乘x,得到,解得x2,式子有最小值,最小值為4

學(xué)以致用:

根據(jù)上面的閱讀材料回答下列問題:

1)已知x0,則當(dāng)x__________時(shí),式子取到最小值,最小值為:_______________

2)用籬笆圍一個(gè)面積為100m的長(zhǎng)方形花園,問這個(gè)長(zhǎng)方形的長(zhǎng)、寬各為多少時(shí),所用的籬笆最短,最短的籬笆是多少米?

3)已知x0,則x取何值時(shí),式子取到最小值,最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+3過點(diǎn)A(-1,0),B(3,0),點(diǎn)M,N為拋物線上的動(dòng)點(diǎn),過點(diǎn)MMD∥y軸,交直線BC于點(diǎn)D,交x軸于點(diǎn)E.

(1)求拋物線的表達(dá)式;

(2)過點(diǎn)NNF⊥x軸,垂足為點(diǎn)F,若四邊形MNFE為正方形(此處限定點(diǎn)M在對(duì)稱軸的右側(cè)),求該正方形的面積;

(3)若∠DMN=90°,MD=MN,直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AC是菱形ABCD的對(duì)角線,且AC=BC

(1)如圖①,點(diǎn)P是△ABC的一個(gè)動(dòng)點(diǎn),將△ABP繞著點(diǎn)B旋轉(zhuǎn)得到△CBE

①求證:△PBE是等邊三角形;

②若BC=5,CE=4,PC=3,求∠PCE的度數(shù);

(2)連結(jié)BDAC于點(diǎn)O,點(diǎn)EOD上且DE=3,AD=4,點(diǎn)G是△ADE內(nèi)的一個(gè)動(dòng)點(diǎn)如圖②,連結(jié)AG,EGDG,求AG+EG+DG的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:點(diǎn)P是△ABC內(nèi)部或邊上的點(diǎn)(頂點(diǎn)除外),在△PAB,△PBC,△PCA中,若至少有一個(gè)三角形與△ABC相似,則稱點(diǎn)P是△ABC的自相似點(diǎn).

例如:如圖1,點(diǎn)P在△ABC的內(nèi)部,∠PBC=∠A,∠PCB=∠ABC,則△BCP∽△ABC,故點(diǎn)P是△ABC的自相似點(diǎn).

請(qǐng)你運(yùn)用所學(xué)知識(shí),結(jié)合上述材料,解決下列問題:

在平面直角坐標(biāo)系中,點(diǎn)M是曲線y=(x>0)上的任意一點(diǎn),點(diǎn)N是x軸正半軸上的任意一點(diǎn).

(1)如圖2,點(diǎn)P是OM上一點(diǎn),∠ONP=∠M,試說明點(diǎn)P是△MON的自相似點(diǎn);當(dāng)點(diǎn)M的坐標(biāo)是(,3),點(diǎn)N的坐標(biāo)是(,0)時(shí),求點(diǎn)P的坐標(biāo);

(2)如圖3,當(dāng)點(diǎn)M的坐標(biāo)是(3,),點(diǎn)N的坐標(biāo)是(2,0)時(shí),求△MON的自相似點(diǎn)的坐標(biāo);

(3)是否存在點(diǎn)M和點(diǎn)N,使△MON無自相似點(diǎn)?若存在,請(qǐng)直接寫出這兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EF分別是邊AB、BC的中點(diǎn),連接AF、DE相交于點(diǎn)G,連接CG

1)求證:AF⊥DE;

2)求證:CG=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線AB軸交于點(diǎn)A,與軸交于點(diǎn)B,與直線OC交于點(diǎn)C

1)若直線AB解析式為

求點(diǎn)C的坐標(biāo);

△OAC的面積.

2)如圖2,作的平分線ON,若AB⊥ON,垂足為E, OA4,PQ分別為線段OA、OE上的動(dòng)點(diǎn),連結(jié)AQPQ,試探索AQPQ是否存在最小值?若存在,求出這個(gè)最小值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案