【題目】如圖,以正方形的頂點為坐標(biāo)原點,直線軸建立直角坐標(biāo)系,對角線相交于點,上一點,點坐標(biāo)為,則點繞點順時針旋轉(zhuǎn)90°得到的對應(yīng)點的坐標(biāo)是( )

A.B.C.D.

【答案】D

【解析】

如圖,連接PE,點P繞點E順時針旋轉(zhuǎn)90°得到的對應(yīng)點P′x軸上,根據(jù)正方形的性質(zhì)得到∠ABC=90°,∠AEB=90°AE=BE,∠EAP′=EBP=45°,由點P坐標(biāo)為(a,b),得到BP=b,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.

如圖,連接PE,點P繞點E順時針旋轉(zhuǎn)90°得到的對應(yīng)點P′x軸上,

∵四邊形ABCD 是正方形,

∴∠ABC=90°,

∴∠AEB=90°,AE=BE,∠EAP′=EBP=45°,

∵點P坐標(biāo)為(ab),

BP=b,

∵∠PEP′=90°,

∴∠AEP′=PEB

AEP′BEP中,

,

∴△AEP′≌△BEPASA),

AP′=BP=b,

∴點P′的坐標(biāo)是(b,0),

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD∥BC,要使四邊形ABCD為平行四邊形,需要增加的一個條是:_____.(只填一個你認(rèn)為正確的條件即可,不添加任何線段與字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過三個點A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.

(1)當(dāng)y1﹣y2=4時,求m的值;

(2)如圖,過點B、C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若三角形PBD的面積是8,請寫出點P坐標(biāo)(不需要寫解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在四邊形ABCD中,∠A=∠C90°

1)∠ABC+∠ADC  °;

2)如圖①,若DE平分∠ADCBF平分∠ABC的外角,請寫出DEBF的位置關(guān)系,并證明;

3)如圖②,若BE,DE分別四等分∠ABC、∠ADC的外角(即∠CDECDN,∠CBECBM),試求∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“宏揚(yáng)傳統(tǒng)文化,打造書香校園”活動中,學(xué)校計劃開展四項活動:“A﹣國學(xué)誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書法”,要求每位同學(xué)必須且只能參加其中一項活動,學(xué)校為了了解學(xué)生的意愿,隨機(jī)調(diào)查了部分學(xué)生,結(jié)果統(tǒng)計如下:

(1)如圖,希望參加活動C占20%,希望參加活動B占15%,則被調(diào)查的總?cè)藬?shù)為 人,扇形統(tǒng)計圖中,希望參加活動D所占圓心角為 度,根據(jù)題中信息補(bǔ)全條形統(tǒng)計圖.

(2)學(xué),F(xiàn)有800名學(xué)生,請根據(jù)圖中信息,估算全校學(xué)生希望參加活動A有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,AB=3,AC=4,BC=5P 為邊 BC 上一動點,PEAB EPFAC F,M EF 中點,則 AM 的最小值為(

A.1B.1.3C.1.2D.1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求解下列各題:

(1)先化簡,再求值:5(a2b + 2ab2)- 2(3a2b + 4ab2-1),其中|a-2|+(b+ 3)2= 0:

(2)解方程:=1-.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,610…這樣的數(shù)稱為三角形數(shù),而把1,49,16…這樣的數(shù)稱為正方形數(shù).觀察下面的點陣圖和相應(yīng)的等式,探究其中的規(guī)律:

1)下圖反映了任何一個三角形數(shù)是如何得到的,認(rèn)真觀察,并在④后面的橫線上寫出相應(yīng)的等式;

2)通過猜想,寫出(1)中與第八個點陣相對應(yīng)的等式  ;

3)從下圖中可以發(fā)現(xiàn),任何一個大于1正方形數(shù)都可以看作兩個相鄰三角形數(shù)之和.結(jié)合(1)觀察下列點陣圖,并在⑤看面的橫線上寫出相應(yīng)的等式.

4)通過猜想,寫出(3)中與第n個點陣相對應(yīng)的等式  ;

5)判斷256是不是正方形數(shù),如果不是,說明理由;如果是,256可以看作哪兩個相鄰的三角形數(shù)之和?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ABx軸于點A(a,0),交軸于點,且,滿足,直線于點.

1________________;并求直線的解析式;

2)過點軸于點,求點的坐標(biāo);

3)在直線上是否存在一點,使得?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案