【題目】如圖,在某一時刻測得1米長的竹竿豎直放置時影長1.2米,在同一時刻旗桿AB的影長不全落在水平地面上,有一部分落在樓房的墻上,測得落在地面上的影長BD=9.6米,留在墻上的影長CD=2米,則旗桿的高度AB____.

【答案】10

【解析】

根據(jù)三個角是直角的四邊形是矩形,可得四邊形BDCE為矩形,利用矩形的對邊相等,可得CE=CE=9.6米,BE=CD=2米,利用在同一時刻物高與影長的比相等,可得,從而求出AE的長,繼而求出AB的長.

解:如圖,

過點CCEAB于點E,可得四邊形BDCE為矩形,

CE=CE=9.6米,BE=CD=2米,

由題意可得:,

AE=8(),

AB=AE+BE=8+2=10().

故答案為:10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中的正方形ABCD邊長為4,正方形ABCD的中心為原點O.現(xiàn)做如下實驗:拋擲一枚均勻的正方體的骰子(六個面分別標(biāo)有16這六個點數(shù)中的一個),每個面朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的點數(shù)作為直角坐標(biāo)系中點P的坐標(biāo)(第次的點數(shù)作為橫坐標(biāo),第二次的點數(shù)作為縱坐標(biāo))

(1)求點P落在正方形ABCD面上(含正方形內(nèi)部和邊界)的概率;

(2)試將正方形ABCD平移整數(shù)個單位,則是否存在一種平移,使點P落在正方形ABCD面上的概率為?若存在,請指出平移方式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AB為直徑作半圓O,點C是半圓上一點,∠ABC的平分線交OEDBE延長線上一點,且DEFE

1)求證:ADO切線;

2)若AB20,tanEBA,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級甲、乙兩班各有學(xué)生50人,為了了解這兩個班學(xué)生身體素質(zhì)情況,進行了抽樣調(diào)查,過程如下,請補充完整.

1)收集數(shù)據(jù):從甲、乙兩個班各隨機抽取10名學(xué)生進行身體素質(zhì)測試,測試成績(百分制)如下:

甲班65 75 75 80 60 50 75 90 85 65

乙班90 55 80 70 55 70 95 80 65 70

2)整理描述數(shù)據(jù):按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):

成績x

人數(shù)

班級

50x60

60x70

70x80

80x90

90x100

甲班

1

3

3

2

1

乙班

2

1

m

2

n

在表中:m=______n=______

3)分析數(shù)據(jù):

①兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:

班級

平均數(shù)

中位數(shù)

眾數(shù)

甲班

72

x

75

乙班

72

70

y

在表中:x=______,y=______

②若規(guī)定測試成績在80分(含80分)以上的學(xué)生身體素質(zhì)為優(yōu)秀,請估計乙班50名學(xué)生中身體素質(zhì)為優(yōu)秀的學(xué)生有______人.

③現(xiàn)從甲班指定的2名學(xué)生(11女),乙班指定的3名學(xué)生(21女)中分別抽取1名學(xué)生去參加上級部門組織的身體素質(zhì)測試,用樹狀圖和列表法求抽到的2名同學(xué)是11女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACB中,∠ACB=90°,在AB的同側(cè)分別作正ACD、正ABE和正BCF. 若四邊形CDEF的周長是24,面積是17,則AB的長是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),歷時7min同時到達C點,甲機器人前3分鐘以a m/min的速度行走,乙機器人始終以60m/min的速度行走,如圖是甲、乙兩機器人之間的距離y(m)與他們的行走時間x(min)之間的函數(shù)圖象,請結(jié)合圖象,回答下列問題:

(1)AB兩點之間的距離是____m,A、C兩點之間的距離是____m,a=____m/min;

(2)求線段EF所在直線的函數(shù)解析式;

(3)設(shè)線段FGx.

①當(dāng)3≤x≤4時,甲機器人的速度為____m/min;

②直接寫出兩機器人出發(fā)多長時間相距28m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,拋物線y=-x2-x-3x軸于A、B兩點(A在點B的左側(cè)),交y軸于點C.

(1)求直線AC的解析式;

(2)①點P是直線AC上方拋物線上的一個動點(不與點A、點C重合),過點PPDAC于點D,求PD的最大值;

②當(dāng)線段PD的長度最大時,點Q從點P出發(fā),先以每秒1個單位長度的速度沿適當(dāng)?shù)穆窂竭\動到y軸上的點M處,再沿MC以每秒個單位長度的速度運動到點C停止,當(dāng)點Q在整個運動過程中用時最少時,求點M的坐標(biāo);

(3)如圖②,將△BOC沿直線BC平移,點B平移后的對應(yīng)點為點B',點O平移后的對應(yīng)點為點O',點C平移后的對應(yīng)點為點C',點S是坐標(biāo)平面內(nèi)一點,若以A、CO'、S為頂點的四邊形是菱形,求出所有符合條件的點O'的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)國家有關(guān)開展中小學(xué)生“課后服務(wù)”的政策,某學(xué)校課后開設(shè)了A:課后作業(yè)輔導(dǎo)、B:書法、C:閱讀、D:繪畫、E:器樂,五門課程供學(xué)生選擇;其中A(必選項目),再從B、C、D、E中選兩門課程.

1)若學(xué)生小玲第一次選一門課程,直接寫出學(xué)生小玲選中項目E的概率;

2)若學(xué)生小強和小明在選項的過程中,第一次都是選了項目E,那么他倆第二次同時選擇書法或繪畫的概率是多少?請用列表法或畫樹狀圖的方法加以說明并列出所有等可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小剛一起做游戲,游戲規(guī)則如下:將分別標(biāo)有數(shù)字 1, 2 3 4 4 個小球放入一個不透明的袋子中,這些球除數(shù)字外都相同.從中隨機摸出一個球記下數(shù)字后放回,再從中隨機摸出一個球記下數(shù)字.若兩次數(shù)字差的絕對值小于 2,則小明獲勝,否則小剛獲勝.這個游戲?qū)扇斯絾?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案