【題目】若二次函數(shù)的圖象與軸分別交于點、,且過點.

1)求二次函數(shù)表達式;

2)若點為拋物線上第一象限內(nèi)的點,且,求點的坐標(biāo);

3)在拋物線上(下方)是否存在點,使?若存在,求出點軸的距離;若不存在,請說明理由.

【答案】l ;(2)點的坐標(biāo)為;(3)點軸的距離為 .

【解析】

1)根據(jù)待定系數(shù)法,計算即可.

2)首先設(shè)出P點的坐標(biāo),再利用求解未知數(shù),可得P點的坐標(biāo).

3)首先求出直線AB的解析式,過點軸,垂足為,作軸交于點,再利用平行證明,列出方程求解參數(shù),即可的點軸的距離.

l)因為拋物線過點,∴,

又因為拋物線過點

解,得

所以,拋物線表達式為

2)連接,設(shè)點.

由題意得

(舍)

∴點的坐標(biāo)為.

3)設(shè)直線的表達式為,因直線過點

,

解,得

所以的表達式為

設(shè)存在點滿足題意,點的坐標(biāo)為,過點軸,垂足為,作軸交于點,則的坐標(biāo)為,.

又∵

.

解得:

所以點軸的距離為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,AD=BC=2AB,FAD的中點,作CEAB,垂足E在線段AB上,連接EF、CF

1)若∠ADC=80°,求∠ECF;

2)求證:∠ECF=CEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板和一張對邊平行的紙條按如圖的方式擺放,∠A=∠DEF90°,∠EDF45°,∠ABC30°,點E,F均在邊AB上,點D在紙條的一邊上,若邊BC與紙條的另一邊重合,則∠α的度數(shù)是( 。


A.15°B.22C.30°D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AB⊙O的直徑,C、D為心⊙O上的點,C是優(yōu)弧AD的中點,CE⊥DBDB的延長線于點E

1)如圖1,判斷直線CE⊙O的位置關(guān)系,并說明理由.

2)如圖2,若tan∠BCE,連BC、CD,求cos∠BCD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】切實減輕學(xué)生課業(yè)負(fù)擔(dān)是我市作業(yè)改革的一項重要舉措.某中學(xué)為了解本校學(xué)生平均每天的課外作業(yè)時間,隨機抽取部分學(xué)生進行問卷調(diào)查,并將調(diào)查結(jié)果分為A、B、CD四個等級,A1小時以內(nèi);B1小時--1.5小時;C1.5小時--2小時;D2小時以上.根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩種不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:

1)該校共調(diào)查了多少名學(xué)生?

2)請將條形統(tǒng)計圖補充完整;

3)在此次調(diào)查問卷中,甲、乙兩班各有2人平均每天課外作業(yè)量都是2小時以上,從這4人中人選2人去參加座談,用列表或畫樹狀圖的方法求選出的2人來自不同班級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織了一次比賽,甲、乙兩隊各有5人參加比賽,兩隊每人的比賽成績(單位:分)如下:

甲隊:7,8,9,610

乙隊:109,58,8

1)甲隊成績的中位數(shù)是   分,乙隊成績的眾數(shù)是   分;

2)計算乙隊的平均成績和方差;

3)已知甲隊成績的方差為S22,則成績波動較大的是   隊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織學(xué)生書法比賽,對參賽作品按A、B、C、D四個等級進行了評定.現(xiàn)隨機取部分學(xué)生書法作品的評定結(jié)果進行分析,并繪制扇形統(tǒng)計圖和條形統(tǒng)計圖如下:

根據(jù)上述信息完成下列問題:

(1)求這次抽取的樣本的容量;

(2)請在圖②中把條形統(tǒng)計圖補充完整;

(3)已知該校這次活動共收到參賽作品750份,請你估計參賽作品達到B級以上(即A級和B級)有多少份?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,的弦,,的延長線交于點,點上, 滿足

1)求證:的切線;

2)若, 求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有,兩個不透明的袋子,分別裝有3個除顏色外完全相同的小球.其中,袋裝有1個白球,2個紅球;袋裝有1個紅球,2個白球.

1)將袋搖勻,然后從袋中隨機摸出一個球,則摸出的小球是紅球的概率為______;

2)小王和小周商定了一個游戲規(guī)則:從搖勻后的,兩袋中各隨機摸出一個球,摸出的這兩個球,若顏色相同,則小王獲勝;若顏色不同,則小周獲勝.請利用概率說明這個游戲規(guī)則是否公平.

查看答案和解析>>

同步練習(xí)冊答案