【題目】已知y﹣3與x成正比例,且x=﹣2時,y=4. ①求出y與x之間的函數(shù)表達式;
②設(shè)點P(m,﹣1)在這個函數(shù)的圖象上,求m的值.
【答案】解:①∵y﹣3與x成正比例, ∴設(shè)y﹣3=kx(k≠0),
∵x=﹣2時,y=4,
∴4﹣3=﹣2k,解得:k=﹣ ,
∴y與x之間的函數(shù)表達式為y=﹣ x+3.
②∵點P(m,﹣1)在這個函數(shù)的圖象上,
∴﹣1=﹣ m+3,
解得:m=8.
【解析】①設(shè)y﹣3=kx(k≠0),根據(jù)點的坐標(biāo)利用待定系數(shù)法即可求出一次函數(shù)表達式;②將點(m,﹣1)代入一次函數(shù)解析式中可得出關(guān)于m的一元一次方程,解之即可得出結(jié)論.
【考點精析】本題主要考查了確定一次函數(shù)的表達式的相關(guān)知識點,需要掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小軒從如圖所示的二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息:
①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.
你認(rèn)為其中正確信息的個數(shù)有( )
A.2個 B.3個 C.4個 D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】青少年“心理健康“問題越來越引起社會的關(guān)注,某中學(xué)為了了解學(xué)校600名學(xué)生的心理健康狀況,舉行了一次“心理健康“知識測試.并隨機抽取了部分學(xué)生的成績(得分取正整數(shù),滿分為100分)作為樣本,繪制了下面未完成的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).請回答下列問題:
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 14 | 0.28 |
70.5~80.5 | 16 | |
80.5~90.5 | ||
90.5~100.5 | 10 | 0.20 |
合計 | 1.00 |
(1)填寫頻數(shù)分布表中的空格,并補全頻數(shù)分布直方圖;
(2)若成績在70分以上(不含70分)為心理健康狀況良好.若心理健康狀況良好的人數(shù)占總?cè)藬?shù)的70%以上,就表示該校學(xué)生的心理健康狀況正常,否則就需要加強心理輔導(dǎo).請根據(jù)上述數(shù)據(jù)分析該校學(xué)生是否需要加強心理輔導(dǎo),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?請說明理由.
(2)如果∠1=∠2,且∠ACB=110°,求∠3的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】代數(shù)式2x+3中,當(dāng)x取a﹣3時,問2x+3是不是a的函數(shù)?若不是,請說明理由;若是,也請說明理由,并請以a的取值為橫坐標(biāo),對應(yīng)的2x+3值為縱坐標(biāo),畫出其圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運算正確的( )
A.(﹣a)(﹣a)4=﹣a5
B.(a﹣b)2=a2﹣b2
C.(a3)2=a5
D.a3+a3=2a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著空氣質(zhì)量的惡化,霧霾天氣現(xiàn)象增多,危害加重.森林是“地球之肺”,每年能為人類提供大約28.3億噸的有機物,28.3億可用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,已知拋物線的頂點為D,與x軸交于A、B兩點,與y軸交于C點,E為對稱軸上的一點,連接CE,將線段CE繞點E按逆時針方向旋轉(zhuǎn)90°后,點C的對應(yīng)點C′恰好落在y軸上.
(1)直接寫出D點和E點的坐標(biāo);
(2)點F為直線C′E與已知拋物線的一個交點,點H是拋物線上C與F之間的一個動點,若過點H作直線HG與y軸平行,且與直線C′E交于點G,設(shè)點H的橫坐標(biāo)為m(0<m<4),那么當(dāng)m為何值時,=5:6?
(3)圖2所示的拋物線是由向右平移1個單位后得到的,點T(5,y)在拋物線上,點P是拋物線上O與T之間的任意一點,在線段OT上是否存在一點Q,使△PQT是等腰直角三角形?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com