【題目】小軒從如圖所示的二次函數(shù)y=ax2+bx+c(a0)的圖象中,觀察得出了下面五條信息:

①ab0;②a+b+c0;③b+2c0;④a﹣2b+4c0;⑤

你認為其中正確信息的個數(shù)有(

A.2個 B.3個 C.4個 D.5個

【答案】D

【解析】

試題分析:①如圖,拋物線開口方向向下,a0.

對稱軸x==,b=a0,ab0.故①正確;

②如圖,當(dāng)x=1時,y0,即a+b+c0.

故②正確;

③如圖,當(dāng)x=﹣1時,y=a﹣b+c0,2a﹣2b+2c0,即3b﹣2b+2c0,b+2c0.

故③正確;

④如圖,當(dāng)x=時,y0,即0,a﹣2b+4c0,故④正確;

⑤如圖,對稱軸x==,則.故⑤正確.

綜上所述,正確的結(jié)論是①②③④⑤,共5個.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為給同學(xué)們創(chuàng)造更好的讀書條件,學(xué)校準備新建一個長度為L的度數(shù)長廊,并準備用若干塊帶有花紋和沒有花紋的兩種規(guī)格、大小相同的正方形地面磚搭配在一起,按如圖所示的規(guī)律拼成圖案鋪滿長廊,已知每個小正方形地面磚的邊長均為0.6m.

(1)按圖示規(guī)律,第一圖案的長度L1=m;第二個圖案的長度L2=m.
(2)請用代數(shù)式表示帶有花紋的地面磚塊數(shù)n與走廊的長度Ln之間的關(guān)系.
(3)當(dāng)走廊的長度L為36.6m時,請計算出所需帶有花紋圖案的瓷磚的塊數(shù)及瓷磚總數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C在射線OA上,CE平分∠ACD. OF平分∠COB并與射線CD交于點F。

(1)依題意補全圖形;
(2)若∠COB+∠OCD=180°,求證:∠ACE=∠COF。
請將下面的證明過程補充完整。
證明:∵CE平分∠ACD,OF平分∠COB,
∴∠ACE= , ∠COF= ∠COB。
(理由:
∵點C在射線OA上,
∴∠ACD+∠OCD=180°。
∵∠COB+∠OCD=180°,
∴∠ACD=∠。
(理由:
∴∠ACE=∠COF。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】mn,則下列各式中一定成立的是( )

A.m2n3B.m5n5C.2m>﹣2nD.3m4n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將n個邊長都為1cm的正方形按如圖所示的方法擺放,點A1 , A2 , …,An分別是正方形對角線的交點,則n個正方形重疊形成的重疊部分的面積和為( )

A.cm2
B.cm2
C.cm2
D.( ncm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若3x=a,3y=b,則32x+y的值為(
A.ab
B.a2b
C.ab2
D.3a2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,所示是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(5,0),對稱軸為直線x=1,下列結(jié)論中錯誤的是(

A.a(chǎn)bc0

B.當(dāng)x1時,y隨x的增大而增大

C.a(chǎn)+b+c0

D.方程ax2+bx+c=0的根為x1=﹣3,x2=5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y﹣3與x成正比例,且x=﹣2時,y=4. ①求出y與x之間的函數(shù)表達式;
②設(shè)點P(m,﹣1)在這個函數(shù)的圖象上,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線AB∥DC,點P為平面上一點,連接AP與CP.
(1)如圖1,點P在直線AB、CD之間,當(dāng)∠BAP=60°,∠DCP=20°時,求∠APC.

(2)如圖2,點P在直線AB、CD之間,∠BAP與∠DCP的角平分線相交于點K,寫出∠AKC與∠APC之間的數(shù)量關(guān)系,并說明理由.

(3)如圖3,點P落在CD外,∠BAP與∠DCP的角平分線相交于點K,∠AKC與∠APC有何數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案