【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點.點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為時,四邊形AMDN是矩形;
②當(dāng)AM的值為時,四邊形AMDN是菱形.
【答案】
(1)證明:∵四邊形ABCD是菱形,
∴ND∥AM,
∴∠NDE=∠MAE,∠DNE=∠AME,
又∵點E是AD邊的中點,
∴DE=AE,
∴△NDE≌△MAE,
∴ND=MA,
∴四邊形AMDN是平行四邊形
(2)1;2
【解析】解:(2)①當(dāng)AM的值為1時,四邊形AMDN是矩形.理由如下:
∵AM=1= AD,
∴∠ADM=30°
∵∠DAM=60°,
∴∠AMD=90°,
∴平行四邊形AMDN是矩形;
故答案為:1;
②當(dāng)AM的值為2時,四邊形AMDN是菱形.理由如下:
∵AM=2,
∴AM=AD=2,
∴△AMD是等邊三角形,
∴AM=DM,
∴平行四邊形AMDN是菱形,
故答案為:2.
(1)利用菱形的性質(zhì)和已知條件可證明四邊形AMDN的對邊平行且相等即可;(2)①有(1)可知四邊形AMDN是平行四邊形,利用有一個角為直角的平行四邊形為矩形即∠DMA=90°,所以AM= AD=1時即可;②當(dāng)平行四邊形AMND的鄰邊AM=DM時,四邊形為菱形,利用已知條件再證明三角形AMD是等邊三角形即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題
(1)計算:﹣14+ sin60°+( )﹣2﹣(π﹣ )0
(2)先化簡,再求值:(1﹣ )÷ ,其中x= ﹣1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將平行四邊形ABCD的邊AB延長至點E,使BE=AB,連接DE,EC,DE,交BC于點O.
(1)求證:△ABD≌△BEC;
(2)連接BD,若∠BOD=2∠A,求證:四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.
(1)證明四邊形ADCF是菱形;
(2)若AC=4,AB=5,求菱形ADCF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=4,S△ABC=4 ,點P、Q、K分別為線段AB、BC、AC上任意一點,則PK+QK的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx+b的圖象如圖所示:
(1)求出該一次函數(shù)的表達(dá)式;
(2)當(dāng)x=10時,y的值是多少?
(3)當(dāng)y=12時,x的值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠DAC=∠ACB,要使四邊形ABCD成為平行四邊形,則應(yīng)增加的條件不能是( )
A.AD=BC
B.OA=OC
C.AB=CD
D.∠ABC+∠BCD=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于坐標(biāo)平面內(nèi)的點,現(xiàn)將該點向右平移1個單位,再向上平移2的單位,這種點的運動稱為點A的斜平移,如點P(2,3)經(jīng)1次斜平移后的點的坐標(biāo)為(3,5),已知點A的坐標(biāo)為(1,0).
(1)分別寫出點A經(jīng)1次,2次斜平移后得到的點的坐標(biāo).
(2)如圖,點M是直線l上的一點,點A關(guān)于點M的對稱點的點B,點B關(guān)于直線l的對稱軸為點C.
①若A、B、C三點不在同一條直線上,判斷△ABC是否是直角三角形?請說明理由.
②若點B由點A經(jīng)n次斜平移后得到,且點C的坐標(biāo)為(7,6),求出點B的坐標(biāo)及n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com