【題目】如圖所示,某攔水大壩的橫斷面為梯形ABCDAE、DF為梯形的高,其中迎水坡AB的坡角α=45°,坡長(zhǎng)AB=米,背水坡CD的坡度i=1:iDFFC的比值),則背水坡CD的坡長(zhǎng)為______米.

【答案】12.

【解析】∵AE⊥BC、DF⊥BC,AD//BC,

∴∠DAE=∠AEB=90°,∠AEF=∠DFE=∠DFC=90°,

∴四邊形AEFD是矩形,∴DF=AE,

Rt△AEB中,∠AEB=90°,AB=6 ,∠ABE=45°,∴AE=AB·sin∠ABE=6,

∴DF=6,

Rt△DFC中,∠DFC=90°,DF:FC=i=1:=tan∠C, ∴∠C=30°,∴CD=2DF=12,

即背水坡CD在坡長(zhǎng)為12米,

故答案為:12.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,AD△ABC的角平分線,點(diǎn)OAB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,連接AE,BE

1)求證:四邊形AEBD是矩形;

2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的方程x2﹣2ax+a﹣2=0的一個(gè)實(shí)數(shù)根為x1≥1,另一個(gè)實(shí)數(shù)根x2≤﹣1,則拋物線y=﹣x2+2ax+2﹣a的頂點(diǎn)到x軸距離的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋中裝有3個(gè)帶號(hào)碼的球,球號(hào)分別為2,3,4,這些球除號(hào)碼不同外其它均相同。甲、乙、兩同學(xué)玩摸球游戲,游戲規(guī)則如下:

先由甲同學(xué)從中隨機(jī)摸出一球,記下球號(hào),并放回?cái)噭,再由乙同學(xué)從中隨機(jī)摸出一球,記下球號(hào)。將甲同學(xué)摸出的球號(hào)作為一個(gè)兩位數(shù)的十位上的數(shù),乙同學(xué)的作為個(gè)位上的數(shù)。若該兩位數(shù)能被4整除,則甲勝,否則乙勝.

問(wèn):這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E△ABC的內(nèi)心,AE的延長(zhǎng)線和△ABC的外接圓相交于點(diǎn)D.

(1)當(dāng)△ABC的外接圓半徑為1時(shí),且∠BAC=60°,求弧BC的長(zhǎng)度.

(2)連接BD,求證:DE=DB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校組織學(xué)生書(shū)法比賽,對(duì)參賽作品按A、B、CD四個(gè)等級(jí)進(jìn)行了評(píng)定.現(xiàn)隨機(jī)抽取部分學(xué)生書(shū)法作品的評(píng)定結(jié)果進(jìn)行分析,并繪制扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖如下:

根據(jù)上述信息完成下列問(wèn)題:

1)求這次抽取的樣本的容量;

2)請(qǐng)?jiān)趫D②中把條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)已知該校這次活動(dòng)共收到參賽作品720份,請(qǐng)你估計(jì)參賽作品達(dá)到B級(jí)以上(A級(jí)和B級(jí))有多少份?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,并且關(guān)于x的一元二次方程ax2+bx+cm=0有兩個(gè)不相等的實(shí)數(shù)根,下列結(jié)論:b2﹣4ac<0;②abc>0;③ab+c<0;④m>﹣2,其中,正確的個(gè)數(shù)有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+3(a≠0)過(guò)A(4,4),B(2,m)兩點(diǎn),點(diǎn)B到拋物線對(duì)稱軸的距離記為d,滿足0<d≤1,則實(shí)數(shù)m的取值范圍是( 。

A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,先把一矩形ABCD紙片上下對(duì)折,設(shè)折痕為MN;如圖②,再把點(diǎn)B疊在折痕線MN上,得到RtABE.過(guò)B點(diǎn)作PQMN,分別交EC、AD于點(diǎn)P、Q.

(1)求證:PBE∽△QAB;

(2)在圖②中,如果沿直線EB再次折疊紙片,點(diǎn)A能否疊在直線EC上?請(qǐng)說(shuō)明理由;

(3)在(2)的條件下,若AB=3,求AE的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案