如圖,已知直線AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,則∠C的度數(shù)為


  1. A.
    150°
  2. B.
    130°
  3. C.
    120°
  4. D.
    100°
C
分析:先根據(jù)平行線及角平分線的性質(zhì)求出∠CDB=∠CBD,再根據(jù)平角的性質(zhì)求出∠CDB的度數(shù),再根據(jù)平行線的性質(zhì)求出∠C的度數(shù)即可.
解答:∵直線AB∥CD,∴∠CDB=∠ABD,
∵∠CDB=180°-∠CDE=30°,
∴∠ABD=30°,
∵BE平分∠ABC,∴∠ABD=∠CBD,
∴∠ABC=∠CBD+∠ABD=60°,
∵AB∥CD,
∴∠C=180°-∠ABC=180°-60°=120°.
故選C.
點評:此題比較簡單,考查的是平行線及角平分線的性質(zhì),比較簡單.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

13、如圖,已知直線AB,CD相交于點O,OA平分∠EOC,∠EOC=70°,則∠BOD的度數(shù)等于
35
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,已知直線AB、CD相交于點O,OE平分∠BOC,如果∠BOE=50°,那么∠AOC=
80
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知直線AB和CD相交于O點,∠DOE是直角,OF平分∠AOE,∠BOD=22°,求∠COF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線AB∥CD,∠A=∠C=100°,E、F在CD上,且滿足∠DBF=∠ABD,BE平分∠CBF.
(1)直線AD與BC有何位置關(guān)系?請說明理由.
(2)求∠DBE的度數(shù).
(3)若平行移動AD,在平行移動AD的過程中,是否存在某種情況,使∠BEC=∠ADB?若存在,求出其度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線AB∥CD,EM⊥FM,∠MFD=25°,求∠MEB的度數(shù).

查看答案和解析>>

同步練習冊答案