【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長(zhǎng)是( )
A.2
B.
C.
D.
【答案】C
【解析】解:∵OP平分∠AOB,∠AOB=60°, ∴∠AOP=∠COP=30°,
∵CP∥OA,
∴∠AOP=∠CPO,
∴∠COP=∠CPO,
∴OC=CP=2,
∵∠PCE=∠AOB=60°,PE⊥OB,
∴∠CPE=30°,
∴CE= CP=1,
∴PE= = ,
∴OP=2PE=2 ,
∵PD⊥OA,點(diǎn)M是OP的中點(diǎn),
∴DM= OP= .
故選:C.
【考點(diǎn)精析】通過靈活運(yùn)用角平分線的性質(zhì)定理和含30度角的直角三角形,掌握定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上;在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=6cm,∠B=∠C,BC=4cm,點(diǎn)D為AB的中點(diǎn).若點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請(qǐng)說明理由;
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+2x經(jīng)過原點(diǎn)O,且與直線y=x﹣2交于B,C兩點(diǎn).
(1)求拋物線的頂點(diǎn)A的坐標(biāo)及點(diǎn)B,C的坐標(biāo);
(2)求證:∠ABC=90°;
(3)在直線BC上方的拋物線上是否存在點(diǎn)P,使△PBC的面積最大?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(4)若點(diǎn)N為x軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線a、b、c中,a∥b, b∥c,則直線a與直線c的關(guān)系是( )
A. 相交B. 平行C. 垂直D. 不確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列現(xiàn)象是數(shù)學(xué)中的平移的是 ( )
A. 樹葉從樹上落下B. 電梯從底樓升到頂樓
C. 騎自行車時(shí)輪胎的滾動(dòng)D. 衛(wèi)星繞地球運(yùn)動(dòng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校禮堂前4排共有(6a+3b+10)個(gè)座位,第1排有a個(gè)座位,第2排座位數(shù)比第3排座數(shù)的多5個(gè),第3排座位數(shù)比第1排座位的2倍多6個(gè).
(1)求第3排的座位數(shù)(用含a,b的式子表示):
(2)求第4排的座位數(shù)(用含a,b的式子表示):
(3)若前4排共有82個(gè)座位,求第3排比第2排多多少個(gè)座位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與一次函數(shù)的圖象相交于、兩點(diǎn),從點(diǎn)和點(diǎn)分別引平行于軸的直線與軸分別交于,兩點(diǎn),點(diǎn)為線段上的動(dòng)點(diǎn),過點(diǎn)且平行于軸的直線與拋物線和直線分別交于,.
(1)求一次函數(shù)和二次函數(shù)的解析式,并求出點(diǎn)的坐標(biāo).
(2)當(dāng)SR=2RP時(shí),計(jì)算線段SR的長(zhǎng).
(3)若線段BD上有一動(dòng)點(diǎn)Q且其縱坐標(biāo)為t+3,問是否存在t的值,使.若存在,求的值;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com