【題目】如圖①,∠QPN的頂點(diǎn)P在正方形ABCD兩條對角線交點(diǎn)處,∠QPN=α,將∠QPN繞點(diǎn)P旋轉(zhuǎn),旋轉(zhuǎn)過程中∠QPN的兩邊分別與正方形ABCD的邊ADCD交于點(diǎn)E和點(diǎn)F(點(diǎn)F與點(diǎn)C,D不重合).

(1)如圖①,當(dāng)α=90°時,DE,DF,AD之間滿足的數(shù)量關(guān)系是________;

(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當(dāng)α=60°時,(1)中的結(jié)論變?yōu)?/span>________,請給出證明;

(3)(2)的條件下,若旋轉(zhuǎn)過程中∠QPN的邊PQ與射線AD交于點(diǎn)E,其他條件不變,當(dāng)點(diǎn)E落在線段AD的延長線上時,探究DE,DF,AD之間的數(shù)量關(guān)系(直接寫出結(jié)論,不用加以證明).

【答案】(1)DE+DF=AD;(2)DE+DF=AD,證明見解析;(3)DF﹣DE=AD,證明見解析.

【解析】

(1)根據(jù)題意通過“角邊角”證明△APE≌△DPF,得到AE=DF,則可得DE+DF=AD;

(2)如圖②,AD的中點(diǎn)M,連接PM,根據(jù)題意可證得△MDP是等邊三角形,進(jìn)而可通過“角邊角”證明△MPE≌△DPF,得到ME=DF,則可得DE+DF=AD;

(3)如圖③,當(dāng)點(diǎn)E落在AD的延長線上時,取AD的中點(diǎn)M,連接PM,同理(2)可證得△MPE≌△DPF,得到ME=DF,則可得DF﹣DE=AD.

(1)正方形ABCD的對角線AC,BD交于點(diǎn)P,

∴PA=PD,∠PAE=∠PDF=45°,

∵∠APE+∠EPD=∠DPF+∠EPD=90°,

∴∠APE=∠DPF,

△APE△DPF,

,

∴△APE≌△DPF(ASA),

∴AE=DF,

∴DE+DF=AD;

(2)如圖②,AD的中點(diǎn)M,連接PM,

∵四邊形ABCD為菱形,∠ADC=120°,
∴AD=CD,∠DAP=30°,AC⊥BD,
∴∠ADP=∠CDP=60°,
∵AM=MD,
∴PM=MD,

∴△MDP是等邊三角形

∴PM=PD,∠MPD=∠PME=∠PDF=60°,

∵∠QPN=60°,

∴∠MPE=∠FPD,

△PME△DPF,

∴△MPE≌△DPF(ASA),

∴ME=DF,

∴DE+DF=AD;

(3)如圖③,當(dāng)點(diǎn)E落在AD的延長線上時,取AD的中點(diǎn)M,連接PM,

同(2)可證得,△MDP是等邊三角形,
∴∠PME=∠MPD=60°,PM=PD,
∵∠QPN=60°,
∴∠MPE=∠FPD,
在△MPE和△DPF中,

,
∴△MPE≌△DPF(ASA).
∴ME=DF,
∴DF-DE=ME-DE=DM=AD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是關(guān)于的二次函數(shù).

(1)的值.

(2)當(dāng)為何值時,該函數(shù)圖象的開口向下?

(3)當(dāng)為何值時,該函數(shù)有最小值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了方便孩子入學(xué),小王家購買了一套學(xué)區(qū)房,交首付款15萬元,剩余部分向銀行貸款,貸款及貸款利息按月分期還款,每月還款數(shù)相同.計(jì)劃每月還款y萬元,x個月還清貸款,若yx的反比例函數(shù),其圖象如圖所示:

(1)求yx的函數(shù)解析式;

(2)若小王家計(jì)劃180個月(15年)還清貸款,則每月應(yīng)還款多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=(12mx+m+1及坐標(biāo)平面內(nèi)一點(diǎn)P2,0);

1)若一次函數(shù)圖象經(jīng)過點(diǎn)P2,0),求m的值;

2)若一次函數(shù)的圖象經(jīng)過第一、二、三象限;

①求m的取值范圍;

②若點(diǎn)Ma1,y1),Nay2),在該一次函數(shù)的圖象上,則y1   y2(填、).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,,平分,相交于點(diǎn),則的長等于_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,AB=AC,D為直線BC上一點(diǎn),E為直線AC上一點(diǎn),AD=AE,設(shè)∠BAD=α,CDE=β.

(1)如圖,若點(diǎn)D在線段BC上,點(diǎn)E在線段AC上.

①如果∠ABC=60°,ADE=70°,那么α=   °,β=   °;

②求α,β之間的關(guān)系式.

(2)請直接寫出不同于以上②中的α,β之間的關(guān)系式可以是   .(寫出一個即可.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的邊長為12, DAB邊上一動點(diǎn),過點(diǎn)DDE⊥BC于點(diǎn)E.過點(diǎn)EEF⊥AC于點(diǎn)F
(1)AD=2,求AF的長;
(2)當(dāng)AD取何值時,DE=EF?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC放在每個小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,點(diǎn)B,點(diǎn)C均落在格點(diǎn)上.

(1)計(jì)算ABC的周長等于_____

(2)點(diǎn)P、點(diǎn)Q(不與ABC的頂點(diǎn)重合)分別為邊AB、BC上的動點(diǎn),4PB=5QC,連接AQ、PC.當(dāng)AQPC時,請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出線段AQ、PC,并簡要說明點(diǎn)P、Q的位置是如何找到的(不要求證明).

___________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,其中

(1)求證:為任意非零實(shí)數(shù)時,拋物線軸總有兩個不同的交點(diǎn);

(2)求拋物線軸的兩個交點(diǎn)的坐標(biāo)(用含的代數(shù)式表示);

(3)將拋物線沿軸正方向平移一個單位長度得到拋物線,則無論取任何非零實(shí)數(shù)都經(jīng)過同一個定點(diǎn),直接寫出這個定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案