【題目】在△ABC中,CA=CB,在△AED中, DA=DE,點(diǎn)D、E分別在CA、AB上.
(1)如圖①,若∠ACB=∠ADE=90°,則CD與BE的數(shù)量關(guān)系是 ;
(2)若∠ACB=∠ADE=120°,將△AED繞點(diǎn)A旋轉(zhuǎn)至如圖②所示的位置,求CD與BE的數(shù)量關(guān)系;
(3)若∠ACB=∠ADE=2α(0°< α < 90°),將△AED繞點(diǎn)A旋轉(zhuǎn)至如圖③所示的位置,探究線段CD與BE的數(shù)量關(guān)系,并加以證明(用含α的式子表示).
【答案】(1)BE=CD;(2)BE=CD;(3)BE=2CD·sinα,證明見解析.
【解析】試題分析:(1)由已知,△ADE和△ACB都是等腰直角三角形,所以有AE=AD,AB=AC,從而有,即BE=CD.
(2)如圖,分別過點(diǎn)C、D作CM⊥AB于點(diǎn)M,DN⊥AE于點(diǎn)N,
∵CA=CB,DA=DE,∠ACB=∠ADE=120°,
∴∠CAB=∠DAE,∠ACM=∠ADN="60°" ,AM=AB,AN=AE.
∴∠CAD=∠BAE.
在Rt△ACM和Rt△ADN中,sin∠ACM==,sin∠ADN==,
∴.∴.
又∵∠CAD=∠BAE,∴△BAE∽△CAD.∴.∴BE=CD.
(3)根據(jù)等腰三角形的性質(zhì)和銳角三角函數(shù)定義求得,再由△BAE∽△CAD得出,從而得出結(jié)論.
(1)BE=CD.
(2)BE=CD.
(3)BE=2CD·sinα.證明如下:
如圖,分別過點(diǎn)C、D作CM⊥AB于點(diǎn)M,DN⊥AE于點(diǎn)N,
∵CA=CB,DA=DE,∠ACB=∠ADE="2α" ,
∴∠CAB=∠DAE,∠ACM=∠ADN="α" ,AM=AB,AN=AE.
∴∠CAD=∠BAE.
在Rt△ACM和Rt△ADN中,sin∠ACM=,sin∠ADN=,
∴.∴.
又∵∠CAD=∠BAE,∴△BAE∽△CAD.∴.
∴BE=2DC·sinα.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上一點(diǎn)P表示的數(shù)是6,先把這個點(diǎn)向右移動3個單位長度,再向左移動5個單位長度,則點(diǎn)P表示的數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖一,矩形ABCD中,AB=5cm,BC=4cm,E是BC上一點(diǎn),將△CDE沿DE折疊,使點(diǎn)C落在AB上一點(diǎn)F處,連結(jié)DF、EF.
(1)求BE的長度;
(2)設(shè)點(diǎn)P、H、G分別在線段DE、BC、BA上,當(dāng)BP=CP且四邊形BGPH為矩形時,請說明矩形BGPH的長寬比為2:1,并求PE的長.(如圖二)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售價x(元)與產(chǎn)品的日銷售量y(件)之間的關(guān)系如下表:
x (元) | 15 | 20 | 25 | … |
y (件) | 25 | 20 | 15 | … |
若日銷售量y是銷售價x的一次函數(shù).
(1)求出日銷售量y(件)與銷售價x(元)的函數(shù)關(guān)系式;
(2)求銷售價定為30元時,每日的銷售利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個數(shù)的相反數(shù)、平方根、立方根都等于它本身,這個數(shù)是( )
A. -1B. 1C. 0D. ±1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一點(diǎn)在由兩條公共端點(diǎn)的線段組成的一條折線上且把這條折線分成長度相等的兩部分,這點(diǎn)叫做這條折線的“折中點(diǎn)”.如圖,點(diǎn)D是折線A﹣C﹣B的“折中點(diǎn)”,請解答以下問題:
(1)當(dāng)AC>BC時,點(diǎn)D在線段 上; 當(dāng)AC=BC時,點(diǎn)D與 重合;當(dāng)AC<BC時,點(diǎn)D在線段 上;
(2)若AC=18cm,BC=10cm,若∠ACB=90°,有一動點(diǎn)P從C點(diǎn)出發(fā),在線段CB上向點(diǎn)B運(yùn)動,速度為2cm/s, 設(shè)運(yùn)動時間是t(s), 求當(dāng)t為何值,三角形PCD 的面積為10?
(3)若E為線段AC中點(diǎn),EC=8cm,CD=6cm,求CB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+b與x軸交于點(diǎn)A、B,且A點(diǎn)的坐標(biāo)為(1,0),與y軸交于點(diǎn)C(0,1)
(1)求拋物線的解析式,并求出點(diǎn)B坐標(biāo);
(2)過點(diǎn)B作BD∥CA交拋物線于點(diǎn)D,連接BC、CA、AD,求四邊形ABCD的周長;(結(jié)果保留根號)
(3)在x軸上方的拋物線上是否存在點(diǎn)P,過點(diǎn)P作PE垂直于x軸,垂足為點(diǎn)E,使以B、P、E為頂點(diǎn)的三角形與△CBD相似?若存在請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com