【題目】由一些大小相同,棱長為1的小正方體搭成的幾何體的俯視圖如圖所示,數(shù)字表示該位置的正方體個數(shù).

(1)請畫出它的主視圖和左視圖;

(2)給這個幾何體噴上顏色(底面不噴色),需要噴色的面積為

(3)在不改變主視圖和俯視圖的情況下,最多可添加 塊小正方體.

【答案】1見解析232;(31

【解析】試題分析:(1)根據(jù)圖示可知主視圖有3列,每列小正方形的個數(shù)依次為3、1、3,左視圖有兩列,每列小正方形的個數(shù)依次為3、2,據(jù)此即可畫出;

(2)根據(jù)三視圖畫出幾何體,根據(jù)幾何體即可得;

(3)要不改變主視圖和俯視圖的情況下,根據(jù)題意畫出添加小正方體后的圖形(如圖2)即可.

試題解析:(1)它的主視圖和左視圖,如圖所示,

(2)如圖1,給這個幾何體噴上顏色(底面不噴色),根據(jù)圖形可知需要噴色的面有32個,所以噴色的面積為32;

(3)如圖2,在不改變主視圖和俯視圖的情況下,最多可添加1個小正方體,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC是等腰直角三角形,∠ACB=90°,AB=,將AC邊所在直線向右平移,所得直線MN與BC邊的延長線相交于點M,點D在AC邊上,CD=CM過點D的直線平分∠BDC,與BC交于點E,與直線MN交于點N,聯(lián)接AM.

(1)若CM=,則AM= ;

(2)如圖①,若點E是BM的中點,求證:MN=AM;

(3)如圖②,若點N落在BA的延長線上,求AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O為直線AD上一點,OB是∠AOC內(nèi)部一條射線且滿足∠AOB與∠AOC互補,OMON分別為∠AOC、∠AOB的平分線.

1)∠COD與∠AOB相等嗎?請說明理由;

2)若∠AOB30°,試求∠AOM與∠MON的度數(shù);

3)若∠MON55°,試求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).

(1)將ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的A1B1C;

(2)平移△ABC,若點A的對應(yīng)點A2的坐標(biāo)為(0,﹣4),畫出平移后對應(yīng)的△A2B2C2

(3)若將A1B1C繞某一點旋轉(zhuǎn)可以得到A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標(biāo) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是菱形,點A的坐標(biāo)為(0),分別以A,B為圓心,大于AB的長為半徑作弧,兩弧交于點E,F,直線EF恰好經(jīng)過點D,則點D的坐標(biāo)為( 。

A. 2,2B. 2,C. ,2D. +1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)市場規(guī)定,一次購買蘋果不超過100kg(包括100kg),批發(fā)價為5元,如果一次購買100kg以上蘋果,超過100kg的部分蘋果價格打8折.

(I)請?zhí)顚懴卤?/span>

購買量/kg

0

50

100

150

200

付款金額/元

0

250

_

700

__

(Ⅱ)寫出付款金額關(guān)于購買量的函數(shù)解析式;

(Ⅲ)如果某人付款2100元,求其購買蘋果的數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若菱形的周長為24cm,一個內(nèi)角為60°,則菱形的面積為(  )

A. 4cm2B. 9cm2C. 18cm2D. 36cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線EFMN相交于點O,∠MOE=30°,將一直角三角尺的直角頂點與點O重合,直角邊OAMN重合,OB∠NOE內(nèi)部.操作:將三角尺繞點O以每秒的速度沿順時針方向旋轉(zhuǎn)一周,設(shè)運動時間為t(s).

(1)當(dāng)t為何值時,直角邊OB恰好平分∠NOE?此時OA是否平分∠MOE?請說明理由;

(2)若在三角尺轉(zhuǎn)動的同時,直線EF也繞點O以每秒的速度順時針方向旋轉(zhuǎn)一周,當(dāng)一方先完成旋轉(zhuǎn)一周時,另一方同時停止轉(zhuǎn)動.

當(dāng)t為何值時,OE平分∠AOB?

②OE能否平分∠NOB?若能請直接寫出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著“互聯(lián)網(wǎng)+”時代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費用由里程費和耗時費組成,其中里程費按x元/公里計算,耗時費按y元/分鐘計算(總費用不足9元按9元計價).小明、小剛兩人用該打車方式出行,按上述計價規(guī)則,其打車總費用、行駛里程數(shù)與打車時間如表:

時間(分鐘)

里程數(shù)(公里)

車費(元)

小明

8

8

12

小剛

12

10

16

(1)求x,y的值;

(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費用為多少?

查看答案和解析>>

同步練習(xí)冊答案