(2007•河南)如圖,PA、PB切⊙O于點(diǎn)A、B,點(diǎn)C是⊙O上一點(diǎn),且∠ACB=65°,則∠P=    度.
【答案】分析:連接OA,OB.根據(jù)圓周角定理和四邊形內(nèi)角和定理求解.
解答:解:連接OA,OB.
PA、PB切⊙O于點(diǎn)A、B,則∠PAO=∠PBO=90°,
由圓周角定理知,∠AOB=2∠C=130°,
∵∠P+∠PAO+∠PBO+∠AOB=360°,
∴∠P=180°-∠AOB=50°.
點(diǎn)評(píng):本題利用了切線的概念,圓周角定理,四邊形的內(nèi)角和為360度求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(23)(解析版) 題型:解答題

(2007•河南)如圖,對(duì)稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).
(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當(dāng)平行四邊形OEAF的面積為24時(shí),請(qǐng)判斷平行四邊形OEAF是否為菱形?
②是否存在點(diǎn)E,使平行四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考復(fù)習(xí)針對(duì)性訓(xùn)練 綜合壓軸題(解析版) 題型:解答題

(2007•河南)如圖,對(duì)稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).
(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當(dāng)平行四邊形OEAF的面積為24時(shí),請(qǐng)判斷平行四邊形OEAF是否為菱形?
②是否存在點(diǎn)E,使平行四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省武漢市中考數(shù)學(xué)模擬試卷(1)(解析版) 題型:解答題

(2007•河南)如圖,對(duì)稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).
(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當(dāng)平行四邊形OEAF的面積為24時(shí),請(qǐng)判斷平行四邊形OEAF是否為菱形?
②是否存在點(diǎn)E,使平行四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年湖南省永州市初中校長研究會(huì)常務(wù)理事單位初三聯(lián)考試卷(解析版) 題型:解答題

(2007•河南)如圖,對(duì)稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).
(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當(dāng)平行四邊形OEAF的面積為24時(shí),請(qǐng)判斷平行四邊形OEAF是否為菱形?
②是否存在點(diǎn)E,使平行四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年河南省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•河南)如圖,對(duì)稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).
(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當(dāng)平行四邊形OEAF的面積為24時(shí),請(qǐng)判斷平行四邊形OEAF是否為菱形?
②是否存在點(diǎn)E,使平行四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案