在△ABC中,AB=AC,∠A=36°,BD是∠B的平分線,則DC:AD=   
【答案】分析:利用AB=AC,∠A=36°,BD是∠B的平分線得出∠ABD=∠CBD=36°,∠BDC=72°,由兩個底角為72°,頂角為36°,這樣的三角形的底與一腰之長之比為黃金比:;求得DC:AD的值即可.
解答:解:∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°,
又BD平分∠ABC,
∴∠ABD=∠CBD=36°,
∴∠BDC=72°,
∴BC=BD=AD,
∴△BDC是黃金三角形,
=,
∵BC=AD,
=:1.
故答案為::1.
點評:此題主要考查了黃金三角形的性質(zhì)以及等腰三角形的性質(zhì),利用已知得出△BDC是黃金三角形進而得出=是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點0為AC的中點,OE⊥AB于點E,OE=
32
,以點0為圓心,OA為半徑的圓交AB于點F.
(1)求AF的長;
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點D,將△ADC繞點A順時針旋轉(zhuǎn),使AC與AB重合,點D落在點E處,AE的延長線交CB的延長線于點M,EB的延長線交AD的延長線于點N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點D,B1C1交AC于點E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊答案