【題目】某電腦公司現(xiàn)有A,B,C,D四種型號(hào)的甲品牌電腦和E、F兩種型號(hào)的乙品牌電腦.實(shí)驗(yàn)中學(xué)要從甲、乙兩種品牌電腦中各選購(gòu)一種型號(hào)的電腦.
(1)寫出所有選購(gòu)方案;
(2)如果(1)中各種選購(gòu)方案被選中的可能性相等,那么A型電腦被選中的概率是多少?A型與E型號(hào)被同時(shí)選中的概率是多少?
(3)現(xiàn)知實(shí)驗(yàn)中學(xué)購(gòu)買甲、乙兩種品牌電腦共10臺(tái)(價(jià)格如圖所示),恰好用了4萬元人民幣,其中甲品牌電腦為A型號(hào)電腦,那么購(gòu)買A型號(hào)電腦有幾臺(tái)?.
【答案】(1)共有8種等可能的結(jié)果數(shù);(2)A型電腦被選中的結(jié)果數(shù)為2,A型與E型號(hào)被同時(shí)選中的結(jié)果數(shù)為1,A型電腦被選中的概率為:;A型與E型號(hào)被同時(shí)選中的概率為:;(3)購(gòu)買A型號(hào)電腦有5臺(tái).
【解析】
(1)利用樹狀圖即可得出;
(2)在樹狀圖中可看出;
(3)設(shè)購(gòu)買A型號(hào)電腦x臺(tái),E型號(hào)電腦y臺(tái),列出相應(yīng)方程組,解出即可.
(1)畫樹狀圖為:
共有8種等可能的結(jié)果數(shù);
(2)A型電腦被選中的結(jié)果數(shù)為2,A型與E型號(hào)被同時(shí)選中的結(jié)果數(shù)為1,
所以A型電腦被選中的概率==;
A型與E型號(hào)被同時(shí)選中的概率=;
(3)若購(gòu)買的為A型號(hào)電腦和E型號(hào)電腦,
設(shè)購(gòu)買A型號(hào)電腦x臺(tái),E型號(hào)電腦y臺(tái),
根據(jù)題意得,解得(不合題意舍去);
若購(gòu)買的為A型號(hào)電腦和F型號(hào)電腦,
設(shè)購(gòu)買A型號(hào)電腦x臺(tái),F(xiàn)型號(hào)電腦y臺(tái),
根據(jù)題意得,解得,
答:購(gòu)買A型號(hào)電腦有5臺(tái).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰和小明沿同一條路同時(shí)從學(xué)校出發(fā)到學(xué)校圖書館查閱資料,學(xué)校與圖書館的路程是千米,小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時(shí),小明剛好到達(dá)圖書館,圖中折線和線段分別表示兩人離學(xué)校的路程(千米)與所經(jīng)過的時(shí)間(分鐘)之間的函數(shù)關(guān)系,請(qǐng)根據(jù)圖象回答下列問題:
(1)小聰在圖書館查閱資料的時(shí)間為 分鐘,小聰返回學(xué)校的速度為 千米/分鐘;
(2)請(qǐng)你求出小明離開學(xué)校的路程(千米)與所經(jīng)過的時(shí)間(分鐘)之間的函數(shù)關(guān)系;
(3)求線段的函數(shù)關(guān)系式;
(4)當(dāng)小聰與小明迎面相遇時(shí),他們離學(xué)校的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,在平行四邊形ABCD中,AB=3cm,BC=5cm,AC⊥AB.△ACD沿AC的方向勻速平移得到△PNM,速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),沿著CB方向勻速移動(dòng),速度為1cm/s;當(dāng)△PNM停止平移時(shí),點(diǎn)Q也停止移動(dòng),如圖②.設(shè)移動(dòng)時(shí)間為t(s)(0<t<4).連接PQ、MQ、MC.解答下列問題:
(1)當(dāng)t為何值時(shí),PQ∥AB?
(2)當(dāng)t=3時(shí),求△QMC的面積;
(3)是否存在某一時(shí)刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:河上有一座拋物線形橋洞,已知橋下的水面離橋拱頂部3m時(shí),水面寬AB=6m,建立如圖所示的坐標(biāo)系.
(1)當(dāng)水位上升0.5m時(shí),求水面寬度CD為多少米?(結(jié)果可保留根號(hào))
(2)有一艘游船它的左右兩邊緣最寬處有一個(gè)長(zhǎng)方體形狀的遮陽(yáng)棚,此船正對(duì)著橋洞在上述河流中航行,若這船寬(最大寬度)2米,從水面到棚頂高度為1.8米.問這艘船能否從橋下洞通過?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,﹣3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)求出四邊形ABPC的面積最大時(shí)的P點(diǎn)坐標(biāo)和四邊形ABPC的最大面積;
(3)在直線BC找一點(diǎn)Q,使得△QOC為等腰三角形,寫出Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=4,BC=5,AC的長(zhǎng)是一元二次方程x2﹣15x+54=0的一個(gè)根.
(1)求AC的長(zhǎng);
(2)在AC上找一點(diǎn)D,連接BD,使△ABD∽△ACB;
(3)以AC為一邊作一個(gè)三角形ACM,求出sin∠AMC的值.(所作三角形自己設(shè)計(jì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AE是△ABC的角平分線;ED平分∠AEB交AB于點(diǎn)D;∠CAE=∠B.
(1)如果AC=3.5 cm,求AB的長(zhǎng)度;
(2)猜想:ED與AB的位置關(guān)系,并證明你的猜想。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(x為任意實(shí)數(shù))經(jīng)過下圖中兩點(diǎn)M(1,﹣2)、N(m,0),其中M為拋物線的頂點(diǎn),N為定點(diǎn).下列結(jié)論:
①若方程ax2+bx+c=0的兩根為x1,x2(x1<x2),則﹣1<x1<0,2<x2<3;
②當(dāng)x<m時(shí),函數(shù)值y隨自變量x的減小而減。
③a>0,b<0,c>0.
④垂直于y軸的直線與拋物線交于C、D兩點(diǎn),其C、D兩點(diǎn)的橫坐標(biāo)分別為s、,則s+t=2.
其中正確的是( )
A. ①② B. ①④ C. ②③ D. ②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com