【題目】如下圖,已知直線分別與軸,軸交于,兩點,直線:交于點.
(1)求,兩點的坐標;
(2)如圖1,點E是線段OB的中點,連結AE,點F是射線OG上一點, 當,且時,求的長;
(3)如圖2,若,過點作∥,交軸于點,此時在軸上是否存在點,使,若存在,求出點的坐標;若不存在,請說明理由.
【答案】(1)A(4,0),B(0,-4)(2)EF=(3)
【解析】
(1)根據直線與坐標軸的坐標特點即可求解;
(2)連結BF,根據題意可證明△AOE≌△OBF,得到BF=OE,求出BF=2,再利用在Rt△BEF中,由勾股定理求得EF=;
(3)根據平行求出直線BC的函數表達式為 得到C(-3,0),OC=3再分當M1在A點左側,當M點在A點右側分別進行求解.
(1) 直線與軸,軸分別相交于A,B兩點,
時, ;時,
A(4,0),B(0,-4).
(2)連結BF,由(1) ,得OA=OB,∠AOB=,
∠BOF+∠AOF=,
OF⊥AE,
∠AOF+∠EAO=.
∠BOF=∠EAO,
又AE=OF,OA=OB,
△AOE≌△OBF.
∠OBF=∠AOE=,BF=OE.
E是OB的中點 ,
OE=OB=2.
BF=2.
在Rt△BEF中,由勾股定理,EF2=BF2+BE2=22+22=8.
又EF>0,
EF=.
(3)∵BC∥OG,
∴直線BC的函數表達式為
又B(0,-4),
∴.
∴
令
得.
即C(-3,0).
∴OC=3.
故①當M1在A點左側,在OA上取OM1=3,則M1,C關于y軸對稱.
∴∠MBO=∠CBO.
∵OA=OB,∠AOB=90°,
∴∠ABO=45°.
而∠M1BO+∠ABM1=∠ABO=45°,
即∠CBO+∠ABM1=45°.
∴M1即為所求的點.
∴
②當M點在A點右側,滿足∠CBO+∠ABM2=45°時,又∠ABO=45°,
∴∠CBM2=∠CBO+∠ABM2+∠ABO=45°+45°=90°.
設M2(m,0),
在Rt△CBM2與Rt△BOM2中,由勾股定理,得:
即
∴
∴
∴
科目:初中數學 來源: 題型:
【題目】如圖,直線,與和分別相切于點和點.點和點分別是和上的動點,沿和平移.的半徑為,.下列結論錯誤的是( )
A. B. 若與相切,則
C. 若,則與相切 D. 和的距離為
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A. “明天降雨的概率是60%”表示明天有60%的時間都在降雨
B. “拋一枚硬幣正面朝上的概率為”表示每拋2次就有一次正面朝上
C. “彩票中獎的概率為1%”表示買100張彩票肯定會中獎
D. “某籃球運動員投籃的命中率大約是82.3%”表示投籃1次,命中的可能性較大
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個口袋有個黑球和若干個白球,在不允許將球倒出來的前提下,小明為估計其中的白球數,采用了如下的方法:從口袋中隨機摸出一球,記下顏色,然后把它放回口袋中,搖勻后再隨機摸出一球,記下顏色,再放回口袋中,…,不斷重復上述過程,小明共摸了次,其中次摸到黑球.根據上述數據,小明正估計口袋中的白球的個數是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】等邊△ABC如圖放置,A(1,1),B(3,1),等邊三角形的中心是點D,若將點D繞點A旋轉90°后得到點D′,則D′的坐標( )
A. (1+,0) B. (1﹣,0)或(1+,2)
C. (1+,0)或(1﹣,2) D. (2+,0)或(2﹣,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】等腰直角△ABC,△MAD中,∠BAC=∠DMA=90°,連接BM,CD.且B,M,D三點共線
(1)當點D,點M在BC邊下方,CD<BD時,如圖①,求證:BM+CD=AM;(提示:延長DB到點N,使MN=MD,連接AN.)
(2)當點D在AC邊右側,點M在△ABC內部時,如圖②;當點D在AB邊左側,點M在△ABC外部時,如圖③,請直接寫出線段BM,CD,AM之間的數量關系,不需要證明;
(3)在(1),(2)條件下,點E是AB中點,MF是△AMD的角平分線,連接EF,若EF=2MF=6,則CD= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司有10名工作人員他們的月工資情況如表(其中x為未知數),他們的月平均工資是2.3萬元,根據表中信息計算該公司工作人員的月工資的中位數和眾數分別是( )
職位 | 經理 | 副經理 | A職員 | B職員 | C職員 |
人數 | 1 | 2 | 2 | 4 | 1 |
月工資(萬元/人) | 5 | 3 | 2 | x | 0.8 |
A. 2,4 B. 1.9,1.8 C. 2,1.8 D. 1.8,1.9
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx過點A(1,4)、B(﹣3,0),過點A作直線AC∥x軸,交拋物線于另一點C,在x軸上有一點D(4,0),連接CD.
(1)求拋物線的表達式;
(2)若在拋物線上存在點Q,使得CD平分∠ACQ,請求出點Q的坐標;
(3)在直線CD的下方的拋物線上取一點N,過點N作NG∥y軸交CD于點G,以NG為直徑畫圓在直線CD上截得弦GH,問弦GH的最大值是多少?
(4)一動點P從C點出發(fā),以每秒1個單位長度的速度沿C﹣A﹣D運動,在線段CD上還有一動點M,問是否存在某一時刻使PM+AM=4?若存在,請直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com