【題目】兩塊等腰直角三角形紙片AOB和COD按圖①所示放置,直角頂點重合在點O處,AB=25.保持紙片AOB不動,將紙片COD繞點O逆時針旋轉α(0°<α<90°)角度,如圖②所示.
(1)在圖②中,求證:AC=BD,且AC⊥BD;
(2)當BD與CD在同一直線上(如圖③)時,若AC=7,求CD的長.
【答案】(1)見解析;(2)17
【解析】試題分析:(1)如圖2中,延長BD交OA于G,交AC于E.只要證明△AOC≌△BOD即可解決問題.
(2)如圖3中,在△ABC中,利用勾股定理求出,再根據即可解決問題.
試題解析:(1)證明:如圖2中,延長BD交OA于G,交AC于E.
∵∠AOB=∠COD=,
∴∠AOC=∠DOB,
在△AOC和△BOD中,
∴△AOC≌△BOD,
∴AC=BD,∠CAO=∠DBO,
∵∠DBO+∠GOB=,
∵∠OGB=∠AGE,
∴∠CAO+∠AGE=,
∴∠AEG=,
∴BD⊥AC.
(2)如圖3中, △AOC≌△BOD,
∵BD、CD在同一直線上,BD⊥AC,
∴△ABC是直角三角形,
∴
解得
科目:初中數學 來源: 題型:
【題目】如圖,直線L1過A(0,2),B(2,0)兩點,直線L2:y=mx+b過點C(1,0),且把△AOB分成兩部分,其中靠近原點的那部分是一個三角形,設此三角形的面積為S,求S關于m的函數解析式,及自變量m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當點D在線段BC上時,
①BC與CF的位置關系為: .
②BC,CD,CF之間的數量關系為: ;(將結論直接寫在橫線上)
(2)數學思考
如圖2,當點D在線段CB的延長線上時,結論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明.
(3)拓展延伸
如圖3,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2,CD=BC,請求出GE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面的四個圖案中,既可用旋轉來分析整個圖案的形成過程,又可用軸對稱來分析整個圖案的形成過程的圖案有( )
A.4個 B.3個 C.2個 D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形網格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.△ABC的三個頂點A,B,C都在格點上.將△ABC繞點A按順時針方向旋轉90°得到△AB′C′.
(1)在正方形網格中,畫出△AB′C′;
(2)計算線段AB在變換到AB′的過程中掃過的區(qū)域的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點(﹣1,y1),(4,y2)在一次函數y=3x﹣2的圖象上,則y1 , y2 , 0的大小關系是( )
A.0<y1<y2
B.y1<0<y2
C.y1<y2<0
D.y2<0<y1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將兩塊三角尺AOB與COD的直角頂點O重合在一起,若∠AOD=4∠BOC,OE為∠BOC的平分線,則∠DOE的度數為( 。
A. 36° B. 45° C. 60° D. 72°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為培養(yǎng)學生數學學習興趣,某校七年級準備開設“神奇魔方”、“魅力數獨”、“數學故事”、“趣題巧解”四門選修課(每位學生必須且只選其中一門).
(1)學校對七年級部分學生進行選課調查,得到如圖所示的統(tǒng)計圖.根據該統(tǒng)計圖,請估計該校七年級480名學生選“數學故事”的人數.
(2)學校將選“數學故事”的學生分成人數相等的A,B,C三個班,小聰、小慧都選擇了“數學故事”,已知小聰不在A班,求他和小慧被分到同一個班的概率.(要求列表或畫樹狀圖)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,I是△ABC三內角平分線的交點,IE⊥BC于E,AI延長線交BC于D,CI的延長線交AB于F,下列結論:①∠BIE=∠CID;②S△ABC=IE(AB+BC+AC);③BE=(AB+BC﹣AC);④AC=AF+DC.其中正確的結論是_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com