【題目】如圖是某居民小區(qū)的一塊長為b米,寬為2a米的長方形空地,為了美化環(huán)境,準(zhǔn)備在這個(gè)長方形的四個(gè)頂點(diǎn)處各修建一個(gè)半徑為a米的扇形花臺(tái),然后在花臺(tái)內(nèi)種花,其余部分種草.如果建造花臺(tái)及種花費(fèi)用每平方米需要資金100元,種草每平方米需要資金50元,那么美化這塊空地共需資金多少元?

【答案】(50πa2+100ab)元.

【解析】花臺(tái)面積為πa2平方米,所需資金為πa2×100.草地面積為(2ab-πa2)平方米,所需資金為(2ab-πa2)×50.共需資金為花臺(tái)所需資金+草地所需資金.

花臺(tái)面積為πa2平方米,草地面積為(2ab-πa2)平方米,所需資金為100×πa2+50(2ab-πa2)=(50πa2+100ab)元.

即美化這塊空地共需資金(50πa2+100ab)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一套房子的平面圖,尺寸如圖.

(1)這套房子的總面積是多少?(用含x、y的代數(shù)式表示)

(2)如果x=1.8,y=1,那么房子的面積是多少平方米?如果每平方米房價(jià)為5萬元,那么房屋總價(jià)多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、B兩地在數(shù)軸上相距20米,A地在數(shù)軸上表示的點(diǎn)為-8,小烏龜從A地出發(fā)沿?cái)?shù)軸往B地方向前進(jìn),第一次前進(jìn)1米,第二次后退2米,第三次再前進(jìn)3米,第四次又后退4米,……,按此規(guī)律行進(jìn),(數(shù)軸的一個(gè)單位長度等于1米)

1)求B地在數(shù)軸上表示的數(shù);

2)若B地在原點(diǎn)的左側(cè),經(jīng)過第五次行進(jìn)后小烏龜?shù)竭_(dá)點(diǎn)P,第六次行進(jìn)后到達(dá)點(diǎn)Q,則點(diǎn)P和點(diǎn)Q到點(diǎn)A的距離相等嗎?請(qǐng)說明理由;

3)若B地在原點(diǎn)的右側(cè),那么經(jīng)過30次行進(jìn)后,小烏龜?shù)竭_(dá)的點(diǎn)與點(diǎn)B之間的距離是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,四邊形OABC為矩形,A6,0),C0,3),點(diǎn)M在邊OA上,且M4,0),P、Q兩點(diǎn)同時(shí)從點(diǎn)M出發(fā),點(diǎn)P沿x軸向右運(yùn)動(dòng);點(diǎn)Q沿x軸先向左運(yùn)動(dòng)至原點(diǎn)O后,再向右運(yùn)動(dòng)到點(diǎn)M停止,點(diǎn)P隨之停止運(yùn)動(dòng).P、Q兩點(diǎn)運(yùn)動(dòng)的速度分別為每秒1個(gè)單位、每秒2個(gè)單位.以PQ為一邊向上作正方形PRLQ.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),正方形PRLQ與矩形OABC重疊部分(陰影部分)的面積為S(平方單位).

1)用含t的代數(shù)式表示點(diǎn)P的坐標(biāo).

2)分別求當(dāng)t=1,t=3時(shí),線段PQ的長.

3)求St之間的函數(shù)關(guān)系式.

4)直接寫出L落在第一象限的角平分線上時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了保護(hù)視力,學(xué)校開展了全校性的視力保健活動(dòng),活動(dòng)前,隨機(jī)抽取部分學(xué)生,檢查他們的視力,結(jié)果如圖所示(數(shù)據(jù)包括左端點(diǎn)不包括右端點(diǎn),精確到0.1);活動(dòng)后,再次檢查這部分學(xué)生的視力,結(jié)果如表所示

分組

頻數(shù)

4.0≤x<4.2

2

4.2≤x<4.4

3

4.4≤x<4.6

5

4.6≤x<4.8

8

4.8≤x<5.0

17

5.0≤x<5.2

5

(1)求活動(dòng)所抽取的學(xué)生人數(shù);

(2)若視力達(dá)到4.8及以上為達(dá)標(biāo),計(jì)算活動(dòng)前該校學(xué)生的視力達(dá)標(biāo)率;

(3)請(qǐng)選擇適當(dāng)?shù)慕y(tǒng)計(jì)量,從兩個(gè)不同的角度評(píng)價(jià)視力保健活動(dòng)的效果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)圖(1)是一個(gè)長為2m,寬為2n的矩形,把此矩形沿圖中虛線用剪刀均分為四個(gè)小長方形,然后按圖(2)的形狀拼成一個(gè)大正方形.請(qǐng)問:這兩個(gè)圖形的什么量不變?

(2)把所得的大正方形面積比原矩形的面積多出的陰影部分的面積用含m,n的代數(shù)式表示為(m-n)2或m2-2mn+n2
(3)由前面的探索可得出的結(jié)論是:在周長一定的矩形中,當(dāng) 時(shí),面積最大.
(4)若矩形的周長為24cm,則當(dāng)邊長為多少時(shí),該圖形的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊BC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°到CE,連接AC、DE、BEACDE相交于F,則∠AFD_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解下面內(nèi)容,并解決問題:

善于思考的小明在學(xué)習(xí)《實(shí)數(shù)》一章后,自己探究出了下面的兩個(gè)結(jié)論:

,,都是9×4的算術(shù)平方根,

9×4的算術(shù)平方根只有一個(gè),所以=

,都是9×16的算術(shù)平方根,

9×16的算術(shù)平方根只有一個(gè),所以  

請(qǐng)解決以下問題:

(1)請(qǐng)仿照①幫助小明完成②的填空,并猜想:一般地,當(dāng)a≥0,b≥0時(shí),之間的大小關(guān)系是怎樣的?

(2)再舉一個(gè)例子,檢驗(yàn)?zāi)悴孪氲慕Y(jié)果是否正確.

(3)運(yùn)用以上結(jié)論,計(jì)算:的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我國南宋數(shù)學(xué)家楊輝(約13世紀(jì))所著的《詳解九章算術(shù)》(1261年)一書中,用下圖的三角形解釋二項(xiàng)和的乘方規(guī)律.楊輝在注釋中提到,在他之前北宋數(shù)學(xué)家賈憲(1050年左右)也用過上述方法,因此我們稱這個(gè)三角形為楊輝三角賈憲三角.楊輝三角兩腰上的數(shù)都是,其余每一個(gè)數(shù)為它上方(左右)兩數(shù)的和.事實(shí)上,這個(gè)三角形給出了的展開式(按的次數(shù)由大到小的順序)的系數(shù)規(guī)律.例如,此三角形中第三行的個(gè)數(shù),恰好對(duì)應(yīng)著展開式中的各項(xiàng)系數(shù),第四行的個(gè)數(shù),恰好對(duì)應(yīng)著展開式中的各項(xiàng)系數(shù),等等.請(qǐng)依據(jù)上面介紹的數(shù)學(xué)知識(shí),解決下列問題:

1)寫出的展開式;

2)利用整式的乘法驗(yàn)證你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案