【題目】如圖,已知AD、AE分別是Rt△ABC的高和中線,AB=9cm,AC=12cm,BC=15cm,試求:
(1)AD的長度;
(2)△ACE和△ABE的周長的差.
【答案】(1)AD的長度為cm;(2)△ACE和△ABE的周長的差是3cm.
【解析】
(1)利用直角三角形的面積法來求線段AD的長度;
(2)由于AE是中線,那么BE=CE,再表示△ACE的周長和△ABE的周長,化簡可得△ACE的周長﹣△ABE的周長=AC﹣AB即可.
解:(1)∵∠BAC=90°,AD是邊BC上的高,
∴S△ACB=ABAC=BCAD,
∵AB=9cm,AC=12cm,BC=15cm,
∴AD===(cm),
即AD的長度為cm;
(2)∵AE為BC邊上的中線,
∴BE=CE,
∴△ACE的周長﹣△ABE的周長=AC+AE+CE﹣(AB+BE+AE)=AC﹣AB=12﹣9=3(cm),
即△ACE和△ABE的周長的差是3cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD(AB<AD).
(1)請(qǐng)用直尺和圓規(guī)按下列步驟作圖,保留作圖痕跡;
①以點(diǎn)A為圓心,以AD的長為半徑畫弧交邊BC于點(diǎn)E,連接AE;
②作∠DAE的平分線交CD于點(diǎn)F;
③連接EF;
(2)在(1)作出的圖形中,若AB=8,AD=10,則tan∠FEC的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a>0)的圖象經(jīng)過點(diǎn)A(1,2).
(1)當(dāng)b=1,c=﹣4時(shí),求該二次函數(shù)的表達(dá)式;
(2)已知點(diǎn)M(t﹣1,5),N(t+1,5)在該二次函數(shù)的圖象上,請(qǐng)直接寫出t的取值范圍;
(3)當(dāng)a=1時(shí),若該二次函數(shù)的圖象與直線y=3x﹣1交于點(diǎn)P,Q,將此拋物線在直線PQ下方的部分圖象記為C,
①試判斷此拋物線的頂點(diǎn)是否一定在圖象C上?若是,請(qǐng)證明;若不是,請(qǐng)舉反例;
②已知點(diǎn)P關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為P′,若P′在圖象C上,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn)A(﹣5,0)和點(diǎn)B(3,0).與y軸交于點(diǎn)C(0,5).有一寬度為1,長度足夠的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對(duì)邊交拋物線于點(diǎn)P和Q,交直線AC于點(diǎn)M和N.交x軸于點(diǎn)E和F.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)M和N都在線段AC上時(shí),連接MF,如果sin∠AMF= ,求點(diǎn)Q的坐標(biāo);
(3)在矩形的平移過程中,當(dāng)以點(diǎn)P,Q,M,N為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“學(xué)雷鋒、樹新風(fēng)、做文明中學(xué)生”號(hào)召,某校開展了志愿者服務(wù)活動(dòng),活動(dòng)項(xiàng)目有“戒毒宣傳”、“文明交通崗”、“關(guān)愛老人”、“義務(wù)植樹”、“社區(qū)服務(wù)”等五項(xiàng),活動(dòng)期間,隨機(jī)抽取了部分學(xué)生對(duì)志愿者服務(wù)情況進(jìn)行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動(dòng),最少的參與了1項(xiàng),最多的參與了5項(xiàng),根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)被隨機(jī)抽取的學(xué)生共有多少名?
(2)在扇形統(tǒng)計(jì)圖中,求活動(dòng)數(shù)為3項(xiàng)的學(xué)生所對(duì)應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全折線統(tǒng)計(jì)圖;
(3)該校共有學(xué)生2000人,估計(jì)其中參與了4項(xiàng)或5項(xiàng)活動(dòng)的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,- )三點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折疊長方形紙片ABCD,先折出折痕(對(duì)角線)BD,再折疊使AD邊與BD重合,得折痕DG,若AB=4,BC=3,求AG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=3x與雙曲線y= (k≠0,且x>0)交于點(diǎn)A,點(diǎn)A的橫坐標(biāo)是1.
(1)求點(diǎn)A的坐標(biāo)及雙曲線的解析式;
(2)點(diǎn)B是雙曲線上一點(diǎn),且點(diǎn)B的縱坐標(biāo)是1,連接OB,AB,求△AOB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com