【題目】如圖,已知AD、AE分別是Rt△ABC的高和中線,AB=9cm,AC=12cm,BC=15cm,試求:
(1)AD的長度;
(2)△ACE和△ABE的周長的差.
【答案】(1)AD的長度為cm;(2)△ACE和△ABE的周長的差是3cm.
【解析】
(1)利用直角三角形的面積法來求線段AD的長度;
(2)由于AE是中線,那么BE=CE,再表示△ACE的周長和△ABE的周長,化簡可得△ACE的周長﹣△ABE的周長=AC﹣AB即可.
解:(1)∵∠BAC=90°,AD是邊BC上的高,
∴S△ACB=ABAC=BCAD,
∵AB=9cm,AC=12cm,BC=15cm,
∴AD===(cm),
即AD的長度為cm;
(2)∵AE為BC邊上的中線,
∴BE=CE,
∴△ACE的周長﹣△ABE的周長=AC+AE+CE﹣(AB+BE+AE)=AC﹣AB=12﹣9=3(cm),
即△ACE和△ABE的周長的差是3cm.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD(AB<AD).
(1)請用直尺和圓規(guī)按下列步驟作圖,保留作圖痕跡;
①以點A為圓心,以AD的長為半徑畫弧交邊BC于點E,連接AE;
②作∠DAE的平分線交CD于點F;
③連接EF;
(2)在(1)作出的圖形中,若AB=8,AD=10,則tan∠FEC的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a>0)的圖象經(jīng)過點A(1,2).
(1)當b=1,c=﹣4時,求該二次函數(shù)的表達式;
(2)已知點M(t﹣1,5),N(t+1,5)在該二次函數(shù)的圖象上,請直接寫出t的取值范圍;
(3)當a=1時,若該二次函數(shù)的圖象與直線y=3x﹣1交于點P,Q,將此拋物線在直線PQ下方的部分圖象記為C,
①試判斷此拋物線的頂點是否一定在圖象C上?若是,請證明;若不是,請舉反例;
②已知點P關(guān)于拋物線對稱軸的對稱點為P′,若P′在圖象C上,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于點A(﹣5,0)和點B(3,0).與y軸交于點C(0,5).有一寬度為1,長度足夠的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對邊交拋物線于點P和Q,交直線AC于點M和N.交x軸于點E和F.
(1)求拋物線的解析式;
(2)當點M和N都在線段AC上時,連接MF,如果sin∠AMF= ,求點Q的坐標;
(3)在矩形的平移過程中,當以點P,Q,M,N為頂點的四邊形是平行四邊形時,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應(yīng)“學雷鋒、樹新風、做文明中學生”號召,某校開展了志愿者服務(wù)活動,活動項目有“戒毒宣傳”、“文明交通崗”、“關(guān)愛老人”、“義務(wù)植樹”、“社區(qū)服務(wù)”等五項,活動期間,隨機抽取了部分學生對志愿者服務(wù)情況進行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學生都參與了活動,最少的參與了1項,最多的參與了5項,根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.
(1)被隨機抽取的學生共有多少名?
(2)在扇形統(tǒng)計圖中,求活動數(shù)為3項的學生所對應(yīng)的扇形圓心角的度數(shù),并補全折線統(tǒng)計圖;
(3)該校共有學生2000人,估計其中參與了4項或5項活動的學生共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,- )三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標;
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=3x與雙曲線y= (k≠0,且x>0)交于點A,點A的橫坐標是1.
(1)求點A的坐標及雙曲線的解析式;
(2)點B是雙曲線上一點,且點B的縱坐標是1,連接OB,AB,求△AOB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com