定義:在平面直角坐標(biāo)系中,橫坐標(biāo)與縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“整點(diǎn)”。

若A、B的坐標(biāo)分別是(1,0)和(0,2).在下圖的網(wǎng)格中找出符合條件的“整點(diǎn)P”。

(1)若△APB是等腰三角形,滿足條件的整點(diǎn)P共有    個(gè).它們的坐標(biāo)分別是     ;

(2)若△APB是直角三角形,滿足條件的整點(diǎn)P共有    個(gè).它們的坐標(biāo)分別是     。

 

【答案】

(1)4、(2,3) (22) (2,1) (3,1);(2) 3、(1,2) (2,3) (3,1)

【解析】

試題分析:根據(jù)等腰三角形及直角三角形的性質(zhì)結(jié)合格點(diǎn)的特征即可得到結(jié)果.

(1)若△APB是等腰三角形,滿足條件的整點(diǎn)P共有4個(gè).它們的坐標(biāo)分別是(2,3) (22) (2,1) (3,1);

(2)若△APB是直角三角形,滿足條件的整點(diǎn)P共有3個(gè).它們的坐標(biāo)分別是(1,2) (2,3) (3,1).

考點(diǎn):坐標(biāo)與圖形性質(zhì)

點(diǎn)評(píng):解題的關(guān)鍵是熟練掌握等腰三角形及直角三角形的性質(zhì)及格點(diǎn)的特征,注意不要漏解.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

30、對(duì)于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:
||AB||=|x2-x1|+|y2-y1|.給出下列三個(gè)命題:
①若點(diǎn)C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90°,則||AC||2+||CB||2=||AB||2;
③在△ABC中,||AC||+||CB||>||AB||.其中真命題的個(gè)數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

請(qǐng)你利用直角坐標(biāo)平面上任意兩點(diǎn)(x1,y1)、(x2,y2)間的距離公式d=
(x1-x2)2+(y1-y2)2
解答下列問題:
已知:反比例函數(shù)y=
2
x
與正比例函數(shù)y=x的圖象交于A、B兩點(diǎn)(A在第一象限),點(diǎn)F1(-2,-2)、F2(2,2)在直線y=x上.設(shè)點(diǎn)P(x0,y0)是反比例函數(shù)y=
2
x
圖象上的任意一點(diǎn),記點(diǎn)P與F1、F2兩點(diǎn)的距離之差d=|PF1-PF2|.試比較線段AB的長(zhǎng)度與d的大小,并由此歸納出雙曲線的一個(gè)重要定義(用簡(jiǎn)練的語(yǔ)言表述).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

請(qǐng)你利用直角坐標(biāo)平面上任意兩點(diǎn)(x1,y1)、(x2,y2)間的距離公式數(shù)學(xué)公式解答下列問題:
已知:反比例函數(shù)數(shù)學(xué)公式與正比例函數(shù)y=x的圖象交于A、B兩點(diǎn)(A在第一象限),點(diǎn)F1(-2,-2)、F2(2,2)在直線y=x上.設(shè)點(diǎn)P(x0,y0)是反比例函數(shù)數(shù)學(xué)公式圖象上的任意一點(diǎn),記點(diǎn)P與F1、F2兩點(diǎn)的距離之差d=|PF1-PF2|.試比較線段AB的長(zhǎng)度與d的大小,并由此歸納出雙曲線的一個(gè)重要定義(用簡(jiǎn)練的語(yǔ)言表述).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:廈門 題型:單選題

對(duì)于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:
||AB||=|x2-x1|+|y2-y1|.給出下列三個(gè)命題:
①若點(diǎn)C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90°,則||AC||2+||CB||2=||AB||2;
③在△ABC中,||AC||+||CB||>||AB||.其中真命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第4章《視圖與投影》易錯(cuò)題集(28):4.1 視圖(解析版) 題型:選擇題

對(duì)于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:
||AB||=|x2-x1|+|y2-y1|.給出下列三個(gè)命題:
①若點(diǎn)C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90°,則||AC||2+||CB||2=||AB||2;
③在△ABC中,||AC||+||CB||>||AB||.其中真命題的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案