對于直角坐標平面內(nèi)的任意兩點A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:
||AB||=|x2-x1|+|y2-y1|.給出下列三個命題:
①若點C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90°,則||AC||2+||CB||2=||AB||2
③在△ABC中,||AC||+||CB||>||AB||.其中真命題的個數(shù)為( 。
A.0B.1C.2D.3
對于直角坐標平面內(nèi)的任意兩點A(x1,y1),B(x2,y2),
定義它們之間的一種“距離”:|AB|=|x2-x1|+|y2-y1|.
對于①若點C在線段AB上,設C點坐標為(x0,y0),x0在x1、x2之間,y0在y1、y2之間,
則|AC|+|CB|=|x0-x1|+|y0-y1|+|x2-x0|+|y2-y0|=|x2-x1|+|y2-y1|=|AB|成立,故①正確.
對于②平方后不能消除x0,y0,命題不成立;
對于③在△ABC中,|AC|+|CB|=|x0-x1|+|y0-y1|+|x2-x0|+|y2-y0|≥|(x0-x1)+(x2-x0)|+|(y0-y1)+(y2-y0)|=|x2-x1|+|y2-y1|=|AB|.③不一定成立
∴命題①成立,
故選:B.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

30、對于直角坐標平面內(nèi)的任意兩點A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:
||AB||=|x2-x1|+|y2-y1|.給出下列三個命題:
①若點C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90°,則||AC||2+||CB||2=||AB||2;
③在△ABC中,||AC||+||CB||>||AB||.其中真命題的個數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源:2008年12月浙江省寧波市余姚市世南中學九年級數(shù)學競賽試卷(解析版) 題型:選擇題

對于直角坐標平面內(nèi)的任意兩點A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:
||AB||=|x2-x1|+|y2-y1|.給出下列三個命題:
①若點C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90°,則||AC||2+||CB||2=||AB||2;
③在△ABC中,||AC||+||CB||>||AB||.其中真命題的個數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學 來源:第4章《視圖與投影》易錯題集(28):4.1 視圖(解析版) 題型:選擇題

對于直角坐標平面內(nèi)的任意兩點A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:
||AB||=|x2-x1|+|y2-y1|.給出下列三個命題:
①若點C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90°,則||AC||2+||CB||2=||AB||2;
③在△ABC中,||AC||+||CB||>||AB||.其中真命題的個數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學 來源:第24章《圖形的相似》中考題集(38):24.6 圖形與坐標(解析版) 題型:選擇題

對于直角坐標平面內(nèi)的任意兩點A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:
||AB||=|x2-x1|+|y2-y1|.給出下列三個命題:
①若點C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90°,則||AC||2+||CB||2=||AB||2
③在△ABC中,||AC||+||CB||>||AB||.其中真命題的個數(shù)為( )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習冊答案