分析 根據(jù)勾股定理及其逆定理可得AC2+CD2=DA2知∠ACD=90°,即AC⊥CD,故①錯(cuò)誤,②正確;根據(jù)正切函數(shù)的定義可判斷③;根據(jù)四邊形ABCD的面積為S△ABC+S△ACD可判斷④;作DM⊥BC,交BC延長(zhǎng)線于M,連接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出△ACD是直角三角形,∠ACD=90°,證出∠ACB=∠CDM,得出△ABC∽△CMD,由相似三角形的對(duì)應(yīng)邊成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD即可判斷⑤.
解答 解:∵∠ABC=90°,AB=3,BC=4,
∴AC=√AB2+BC2=5,
在△ACD中,∵CD=10,DA=5√5,
∴AC2+CD2=25+100=125=DA2,
∴∠ACD=90°,即AC⊥CD,故①錯(cuò)誤,②正確;
在Rt△ACD中,tan∠DAC=CDAC=105=2,故③正確;
S四邊形ABCD=S△ABC+S△ACD
=12AB•BC+12AC•CD
=12×3×4+12×5×10
=31,
故④正確;
作DM⊥BC,交BC延長(zhǎng)線于M,如圖所示:
則∠M=90°,
∴∠DCM+∠CDM=90°,
∵∠ABC=90°,AB=3,BC=4,
∴AC2=AB2+BC2=25,
∵CD=10,AD=5√5,
∴AC2+CD2=AD2,
∴△ACD是直角三角形,∠ACD=90°,
∴∠ACB+∠DCM=90°,
∴∠ACB=∠CDM,
∵∠ABC=∠M=90°,
∴△ABC∽△CMD,
∴ABCM=12,
∴CM=2AB=6,DM=2BC=8,
∴BM=BC+CM=10,
∴BD=√BM2+DM2=2√41,故⑤正確;
故答案為:②③④⑤.
點(diǎn)評(píng) 本題考查了相似三角形的判定與性質(zhì)、勾股定理、勾股定理的逆定理;熟練掌握相似三角形的判定與性質(zhì),證明由勾股定理的逆定理證出△ACD是直角三角形是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com