在平面直角坐標系xOy中(O為坐標原點),已知拋物線y=x2+bx+c過點A(4,0),B(1,﹣3).
(1)求b,c的值,并寫出該拋物線的對稱軸和頂點坐標;
(2)設(shè)拋物線的對稱軸為直線l,點P(m,n)是拋物線上在第一象限的點,點E與點P關(guān)于直線l對稱,點E與點F關(guān)于y軸對稱,若四邊形OAPF的面積為48,求點P的坐標;
(3)在(2)的條件下,設(shè)M是直線l上任意一點,試判斷MP+MA是否存在最小值?若存在,求出這個最小值及相應(yīng)的點M的坐標;若不存在,請說明理由.
解:(1)∵拋物線y=x2+bx+c過點A(4,0),B(1,﹣3),
∴.
解得:.
∴y=x2﹣4x=(x﹣2)2﹣4.
∴拋物線的對稱軸為x=2,頂點為(2,﹣4).
(2)如圖1,
∵點P(m,n)與點E關(guān)于直線x=2對稱,
∴點E的坐標為(4﹣m,n).
∵點E與點F關(guān)于y軸對稱,
∴點F的坐標為(m﹣4,n).
∴PF=m﹣(m﹣4)=4.
∴PF=OA=4.
∵PF∥OA,
∴四邊形OAPF是平行四邊形.
∵S▱OAPF=OA•=4n=48,
∴n=12.
∴m2﹣4m=n=12.
解得:m1=6,m2=﹣2.
∵點P是拋物線上在第一象限的點,
∴m=6.
∴點P的坐標為(6,12).
(3)過點E作EH⊥x軸,垂足為H,如圖2,
在(2)的條件下,有P(6,12),E(﹣2,12),
則AH=4﹣(﹣2)=6,EH=12.
∵EH⊥x軸,即∠EHA=90°,
∴EA2=EH2+AH2=122+62=180.
∴EA=6.
∵點E與點P關(guān)于直線l對稱,
∴MP=ME.
∴MP+MA=ME+MA.
根據(jù)“兩點之間線段最短”可得:
當點E、M、A共線時,MP+MA最小,最小值等于EA的長,即6.
科目:初中數(shù)學 來源: 題型:
如圖,將足夠大的等腰直角三角板PCD的銳角頂點P放在另一個等腰直角三角板PAB的直角頂點處,三角板PCD繞點P在平面內(nèi)轉(zhuǎn)動,且∠CPD的兩邊始終與斜邊AB相交,PC交AB于點M,PD交AB于點N,設(shè)AB=2,AN=x,BM=y,則能反映y與x的函數(shù)關(guān)系的圖象大致是( 。
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,直線y=﹣3x﹣3與x軸、y軸分別相交于點A、C,經(jīng)過點C且對稱軸為x=1的拋物線y=ax2+bx+c與x軸相交于A、B兩點.
(1)試求點A、C的坐標;
(2)求拋物線的解析式;
(3)若點M在線段AB上以每秒1個單位長度的速度由點B向點A運動,同時,點N在線段OC上以相同的速度由點O向點C運動(當其中一點到達終點時,另一點也隨之停止運動),又PN∥x軸,交AC于P,問在運動過程中,線段PM的長度是否存在最小值?若有,試求出最小值;若無,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
給出下列函數(shù):①y=2x﹣1;②y=;③y=﹣x2.從中任取一個函數(shù),取出的函數(shù)符合條件“當x>1時,函數(shù)值y隨x增大而減小”的概率是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,直線a∥b,射線DC與直線a相交于點C,過點D作DE⊥b于點E,已知∠1=25°,則∠2的度數(shù)為( 。
| A. | 115° | B. | 125° | C. | 155° | D. | 165° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com