精英家教網 > 初中數學 > 題目詳情

【題目】如圖,A,B是反比例函數y=在第一象限內的圖象上的兩點,且A,B兩點的橫坐標分別是24,則△OAB的面積是_____

【答案】3

【解析】

先根據反比例函數圖象上點的坐標特征及A,B兩點的橫坐標,求出A(2,2),B(4,1).再過A,B兩點分別作AC⊥x軸于C,BD⊥x軸于D,根據反比例函數系數k的幾何意義得出SAOC=SBOD=×4=2.根據S四邊形AODB=SAOB+SBOD=SAOC+S梯形ABDC,得出SAOB=S梯形ABDC,利用梯形面積公式求出S梯形ABDC=(BD+AC)CD=(1+2)×2=3,從而得出SAOB=3.

解:∵A,B是反比例函數y=在第一象限內的圖象上的兩點,且A,B兩點的橫坐標分別是24,
∴當x=2時,y=2,即A(2,2),
x=4時,y=1,即B(4,1).
如圖,過A,B兩點分別作AC⊥x軸于C,BD⊥x軸于D,

SAOC=SBOD=×4=2.
∵S四邊形AODB=SAOB+SBOD=SAOC+S梯形ABDC
∴SAOB=S梯形ABDC,
∵S梯形ABDC=(BD+AC)CD=(1+2)×2=3,
∴SAOB=3.
故答案是:3.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在同一水平線l上的兩根竹竿AB、CD,它們在同一燈光下的影子分別為BE、DF,如圖所示:(竹竿都垂直于水平線l)

(1)根據燈光下的影子確定光源S的位置;

(2)畫出影子為GH的竹竿MG(用線段表示);

(3)若在點H觀測到光源S的仰角是∠α,且 cosα=,GH=1.2m,請求出竹竿MG的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“十九大”報告提出“實施健康中國戰(zhàn)略”,其中霧霾天氣成為環(huán)保和健康問題的焦點,為了調查學生對霧霾天氣知識的了解程度,某中學在全校學生中抽取部分同學做了一次調查,根據調查結果,繪制了如下不完整的統(tǒng)計圖表.

對霧霾天氣了解程度的統(tǒng)計表

對霧霾天氣知識

百分比

A 非常了解

5%

B 比較了解

m

C 基本了解

45%

D 不了解

n

請結合統(tǒng)計圖表,回答下列問題:

1)統(tǒng)計表中:m=__________n=__________;

2)請補全圖1中的條形統(tǒng)計圖;

3)在圖2所示的扇形統(tǒng)計圖中,求D所在扇形對應的圓心角是多少度?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,網格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.

△ACB和△DCE的頂點都在格點上,ED的延長線交AB于點F.

(1)求證:△ACB∽△DCE;(2)求證:EF⊥AB.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=x+m交雙曲線y=(x>0)A、B兩點,交x軸于點C,交y軸于點D,過點AAH⊥x軸于點H,連結BH,若OH:HC=1:5,SABH=1,則k的值為( 。

A. 1 B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某縣教育局為了了解學生對體育立定跳遠()、跳繩()、擲實心球()、中長跑()四個項目的喜愛程度(每人只選一項),確定中考體育考試項目,特對八年級某班進行了調查,并繪制成如下頻數、頻率統(tǒng)計表和扇形統(tǒng)計圖:

1)求出這次調查的總人數;

2)求出表中的值;

3)若該校八年級有學生1200人,請你算出喜愛跳繩的人數,并發(fā)表你的看法.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,原點O是矩形OABC的一個頂點,點A、C都

在坐標軸上,點B的坐標是(4.2),反比例函數與AB,BC分別交于點D,E。

(1)求直線DE的解析式;

(2)若點F為y軸上一點,△OEF和△ODE的面積相等,求點F的坐標。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知PA=PB=PC=2∠BPC=120°,PA∥BC.以AB、PB為邊作平行四邊形ABPD,連接CD,則CD的長為( 。

A. B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y1=ax+223y2=x32+1交于點A1,3),過點Ax軸的平行線,分別交兩條拋物線于點B,C.則以下結論:

①無論x取何值,y2的值總是正數;

a=1

③當x=0時,y2﹣y1=4;

2AB=3AC

其中正確結論是( 。

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

同步練習冊答案