【題目】如圖,矩形OABC的頂點A,B的坐標分別為(4,0),(4,3),動點M,N分別從O,B同時出發(fā).以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點M作MP⊥OA,交AC于P,連接NP,已知動點運動了秒.
(1)當(dāng)時,求PC的長;
(2)當(dāng)為何值時,△NPC是以PC為腰的等腰三角形?
【答案】(1)當(dāng)時, ;(2)當(dāng)或時,△NPC是以PC為腰的等腰三角形.
【解析】試題分析:(1)利用平行于三角形底邊所構(gòu)成對應(yīng)邊成比例得到,代入數(shù)據(jù)求值.(2)隨著M,N點的運動,當(dāng)PC=PN時, 利用矩形的性質(zhì),BC=CN+BN,求得x值 ;當(dāng)PC=CN時,列出對應(yīng)邊成比例,代入求值.
試題解析:
(1)∵ 點A(4,0),B(4,3),∴ OA=4,AB=3,
在矩形OABC中,BC=OA=4,OC=AB=3,∠AOC=∠BCO=90°,
在Rt△AOC中, ,
依題知:OM=BN==1,又PM⊥OA ,∴ PM∥OC,
∴,∴ ,∴ ,
∴ 當(dāng)時, .
(2)①當(dāng)PC=PN時,△NPC是以PC為腰的等腰三角形,
延長MP交BC于點為D,
在矩形OABC中,BC∥OA ,∴ PD⊥BC ,
又∠AOC=∠BCO=90°,
∴ 四邊形OCDM為矩形 ,∴ CD=OM=,
又PC=PN,PD⊥BC ,∴ CN=2CD=,
∵ BC=CN+BN ,∴ ,∴ ,
∴ 當(dāng)時,△NPC是以PC為腰的等腰三角形.
② 當(dāng)PC=CN時,△NPC是以PC為腰的等腰三角形,
由上面知:CN=BC-BN==PC, ∵ PM∥OC ,
∴, ∴, ∴,
∴ 當(dāng)時,△NPC是以PC為腰的等腰三角形;
綜上所述,當(dāng)或時,△NPC是以PC為腰的等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過原點O及點A和點B.
(1)求拋物線的解析式;
(2)如圖1,設(shè)拋物線的對稱軸與x軸交于點C,將直線沿y軸向下平移n個單位后得到直線l,若直線l經(jīng)過B點,與y軸交于點D,且與拋物線的對稱軸交于點E.若P是拋物線上一點,且PB=PE,求點P的坐標;
(3)如圖2,將拋物線向上平移9個單位得到新拋物線,直接寫出下列兩個問題的答案:
①直線至少向上平移多少個單位才能與新拋物線有交點?
②新拋物線上的動點Q到直線的最短距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購買飲料,每種飲料被選中的可能性相同.
(1)若他去買一瓶飲料,則他買到奶汁的概率是 ;
(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.
(1)請你確定燈泡所在的位置,并畫出小亮在燈光下形成的影子.
(2)如果小明的身高AB=1.6m,他的影子長AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列資料,解決問題:
定義:在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”,如:,這樣的分式就是真分式;當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”,如:這樣的分式就是假分式,假分式也可以化為帶分式(即:整式與真分式的和的形式).
如:.
(1)分式是 (填“真分式”或“假分式”);
(2)將假分式分別化為帶分式;
(3)如果分式的值為整數(shù),求所有符合條件的整數(shù)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示平面直角坐標系中,每個小正方形的邊長均為1,△ABC的三個頂點均在格點上.
(1)以O為旋轉(zhuǎn)中心,將△ABC逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A1B1C1;
(2)畫出△A1B1C1關(guān)于原點對稱的△A2B2C2;
(3)若△ABC內(nèi)有一點P(a,b),結(jié)果上面兩次變換后點P在△A2B2C2中的對應(yīng)點為P′,則點P′的坐標為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=BC,以AB為直徑的圓O交AC于點D,過點D作DE⊥BC,垂足為E,連接OE.
(1)求證:DE是⊙O的切線;
(2)若CD=,∠ACB=30°,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE.易證:CE=CF.
(1)在圖1中,若G在AD上,且∠GCE=45°.試猜想GE,BE,GD三線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)運用(1)中解答所積累的經(jīng)驗和知識,完成下面兩題:
①如圖2,在四邊形ABCD中∠B=∠D=90°,BC=CD,點E,點G分別是AB邊,AD邊上的動點.若∠BCD=α,∠ECG=β,試探索當(dāng)α和β滿足什么關(guān)系時,圖1中GE,BE,GD三線段之間的關(guān)系仍然成立,并說明理由.
②在平面直角坐標中,邊長為1的正方形OABC的兩頂點A,C分別在y軸、x軸的正半軸上,點O在原點.現(xiàn)將正方形OABC繞O點順時針旋轉(zhuǎn),當(dāng)A點第一次落在直線y=x上時停止旋轉(zhuǎn),旋轉(zhuǎn)過程中,AB邊交直線y=x于點M,BC邊交x軸于點N(如圖3).設(shè)△MBN的周長為p,在旋轉(zhuǎn)正方形OABC的過程中,p值是否有變化?若不變,請直接寫出結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com