【題目】某學(xué)校為了加強(qiáng)訓(xùn)練學(xué)生的籃球和足球運(yùn)球技能,準(zhǔn)備購買一批籃球和足球用于訓(xùn)練,已知1個籃球和2個足球共需116元;2個籃球和3個足球共需204

求購買1個籃球和1個足球各需多少元?

若學(xué)校準(zhǔn)備購進(jìn)籃球和足球共40個,并且總費(fèi)用不超過1800元,則籃球最多可購買多少個?

【答案】(1)購買一個籃球需60元,購買一個足球需28元;(2)籃球最多可購買21個.

【解析】

(1)設(shè)購買一個籃球元,購買一個足球元,根據(jù)“1個籃球和2個足球共需116,2個籃球和3個足球共需204元”,即可得出關(guān)于、的二元一次方程組,解之即可得出結(jié)論;

(2)設(shè)購買個籃球,則購買的足球數(shù)為,根據(jù)費(fèi)用=單價×數(shù)量,分別求出籃球和足球的費(fèi)用,二者相加便是總費(fèi)用,總費(fèi)用不超過1800,列出關(guān)于的一元一次不等式,解之即可得出結(jié)論.

解:設(shè)購買一個籃球的需x元,購買一個足球的需y元,

依題意得,

解得,

答:購買一個籃球需60元,購買一個足球需28元;

設(shè)購買m個籃球,則足球數(shù)為

依題意得:,

解得:

m為正整數(shù),

,

答:籃球最多可購買21個.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點(diǎn)C,使DC=BD,連接AC,過點(diǎn)DDEACE

(1)求證:AB=AC;

(2)求證:DE為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是用大小相等的小正方形按一定規(guī)律拼成的,則第10個圖形是_________個小正方形,第n 個圖形是___________個小正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知長方形ABCD的兩個頂點(diǎn)A(2,-1),C(6,2)。點(diǎn)M為y軸上一點(diǎn),△MAB的面積為6,且MD<MA。

請解答下列問題:

(1)頂點(diǎn)B的坐標(biāo)為 ;

(2)將長方形ABCD平移后得到,若,則的坐標(biāo)為 ;

(3)求點(diǎn)M的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,E,F分別是AB,DC上的點(diǎn),且,連接DE,BF,AF.

1)求證:四邊形DEBF是平行四邊形;

2)若AF平分,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,P為邊AB上一點(diǎn)

(1) 如圖1,若∠ACPB,求證:AC2AP·AB;

(2) MCP的中點(diǎn),AC2,

如圖2,若∠PBMACP,AB3,求BP的長;

如圖3,若∠ABC45°,ABMP60°,直接寫出BP的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一條東西方向筆直的沿湖道路l上有A、B兩個游船碼頭,觀光島嶼C在碼頭A的北偏東60°方向、在碼頭B的北偏西45°方向,AC4千米.那么碼頭A、B之間的距離等于_____千米.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列解方程組的部分過程,回答下列問題

解方程組

現(xiàn)有兩位同學(xué)的解法如下:

解法一;由①,得x2y+5,③

把③代入②,得3(2y+5)2y3……

解法二:①﹣②,得﹣2x2……

(1)解法一使用的具體方法是________,解法二使用的具體方法是______,以上兩種方法的共同點(diǎn)是________

(2)請你任選一種解法,把完整的解題過程寫出來

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,完成相應(yīng)的任務(wù):

全等四邊形根據(jù)全等圖形的定義可知:四條邊分別相等,四個角也分別相等的兩個四邊形全等.探索三角形全等的條件時,我們把兩個三角形中一條邊相等一個角相等稱為一個條件.智慧小組的同學(xué)類比探索三角形全等條件的方法,探索四邊形全等的條件,進(jìn)行了如下思考:如圖 1,四邊形ABCD和四邊形A'B'C'D'中,連接對角線AC,A'C',這樣兩個四邊形全等的問題就轉(zhuǎn)化為ABCA'B'C'ACD A 'C 'D '的問題.若先給定ABCA'B'C'的條件,只要再增加2個條件使ACDA'C'D'即可推出兩個四邊形中四條邊分別相等,四個角也分別相等,從而說明兩個四邊形全等.

按照智慧小組的思路,小明對圖1中的四邊形ABCD和四邊形A'B'C'D'先給出如下條件:ABA'B',∠B=∠B',BCB'C',小亮在此基礎(chǔ)上又給出“ADA'D'CDC'D'兩個條件,他們認(rèn)為滿足這五個條件能得到四邊形ABCD四邊形A'B'C'D'”.

(1)請根據(jù)小明和小亮給出的條件,說明四邊形ABCD四邊形A'B'C'D'的理由;

(2)請從下面A,B兩題中任選一題作答,我選擇______.

A.在材料中小明所給條件的基礎(chǔ)上,小穎又給出兩個條件“ADA'D',∠BCD=∠B'C'D',滿足這五個條件_______(不能”)得到四邊形 ABCD四邊形A'B'C'D'”.

B.在材料中小明所給條件的基礎(chǔ)上,再添加兩個關(guān)于原四邊形的條件(要求:不同于小亮的條件),使四邊形ABCD四邊形A'B'C'D',你添加的條件是:_____________________.

查看答案和解析>>

同步練習(xí)冊答案