11、對于任意實數(shù)x,不等式kx2-kx-1<0恒成立,求k的取值范圍.
分析:先分類討論:當(dāng)k=0,有-1<0恒成立;當(dāng)k≠0,利用二次函數(shù)的性質(zhì)求解,令y=kx2-kx-1,要y<0恒成立,則開口向下,拋物線與x軸沒公共點,即k<0,且△=k2+4k<0,解不等式即可得到k的取值范圍.
解答:解:當(dāng)k=0,有-1<0恒成立;
當(dāng)k≠0,令y=kx2-kx-1,
∵y<0恒成立,
∴開口向下,拋物線與x軸沒公共點,
即k<0,且△=k2+4k<0,
解得-4<k<0;
綜上所述,k的取值范圍為-4<k≤0;
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))根的判別式△=b2-4ac.當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.同時考查了分類討論思想的運用和利用二次函數(shù)圖象解一元二次不等的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•長沙)設(shè)a、b是任意兩個不等實數(shù),我們規(guī)定:滿足不等式a≤x≤b的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時,有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.
(1)反比例函數(shù)y=
2013
x
是閉區(qū)間[1,2013]上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)若一次函數(shù)y=kx+b(k≠0)是閉區(qū)間[m,n]上的“閉函數(shù)”,求此函數(shù)的解析式;
(3)若二次函數(shù)y=
1
5
x2-
4
5
x-
7
5
是閉區(qū)間[a,b]上的“閉函數(shù)”,求實數(shù)a,b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

設(shè)a、b是任意兩個不等實數(shù),我們規(guī)定:滿足不等式a≤x≤b的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時,有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.
(1)反比例函數(shù)y=數(shù)學(xué)公式是閉區(qū)間[1,2013]上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)若一次函數(shù)y=kx+b(k≠0)是閉區(qū)間[m,n]上的“閉函數(shù)”,求此函數(shù)的解析式;
(3)若二次函數(shù)y=數(shù)學(xué)公式x2-數(shù)學(xué)公式x-數(shù)學(xué)公式是閉區(qū)間[a,b]上的“閉函數(shù)”,求實數(shù)a,b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:長沙 題型:解答題

設(shè)a、b是任意兩個不等實數(shù),我們規(guī)定:滿足不等式a≤x≤b的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時,有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.
(1)反比例函數(shù)y=
2013
x
是閉區(qū)間[1,2013]上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)若一次函數(shù)y=kx+b(k≠0)是閉區(qū)間[m,n]上的“閉函數(shù)”,求此函數(shù)的解析式;
(3)若二次函數(shù)y=
1
5
x2-
4
5
x-
7
5
是閉區(qū)間[a,b]上的“閉函數(shù)”,求實數(shù)a,b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)是任意兩個不等實數(shù),我們規(guī)定:滿足不等式的實數(shù)的所有取值的全體叫做閉區(qū)間,表示為.對于一個函數(shù),如果它的自變量與函數(shù)值滿足:當(dāng)時,有,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.

   (1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請判斷并說明理由;

   (2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此函數(shù)的解析式;

   (3)若二次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求實數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年湖南省長沙市中考數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)a、b是任意兩個不等實數(shù),我們規(guī)定:滿足不等式a≤x≤b的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時,有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.
(1)反比例函數(shù)y=是閉區(qū)間[1,2013]上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)若一次函數(shù)y=kx+b(k≠0)是閉區(qū)間[m,n]上的“閉函數(shù)”,求此函數(shù)的解析式;
(3)若二次函數(shù)y=x2-x-是閉區(qū)間[a,b]上的“閉函數(shù)”,求實數(shù)a,b的值.

查看答案和解析>>

同步練習(xí)冊答案