【題目】(1)觀察圖形:
如圖1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分別為D、E,CD與AE交于點(diǎn)F.
①寫出圖1中所有的全等三角形_________________;
②線段AF與線段CE的數(shù)量關(guān)系是_________________;
(2)問題探究:
如圖2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足為D,AD與BC交于點(diǎn)E.
求證:AE=2CD.
(3)拓展延伸:
如圖3,△ABC中,∠BAC=45°,AB=BC,點(diǎn)D在AC上,∠EDC=∠BAC,DE⊥CE,垂足為E,DE與BC交于點(diǎn)F.
求證:DF=2CE.
【答案】(1)①△ABE≌△ACE,△ADF≌△CDB;②AF=2CE;(2)答案見解析;(3)答案見解析
【解析】
試題觀察圖形:①由全等三角形的判定方法容易得出結(jié)果;
②由全等三角形的性質(zhì)即可得出結(jié)論;
問題探究:延長交于點(diǎn),由ASA證明≌,得出對應(yīng)邊相等 即 證出 由ASA證明≌得出即可.
拓展延伸:作DG⊥BC于點(diǎn)H,交CE的延長線于G,同上證明三角形全等,得出即可.
試題解析:
(1)觀察圖形:
①△ABE≌△ACE,△ADF≌△CDB;
②AF=2CE;
(2)問題探究:
證明:延長AB、CD交于點(diǎn)G,如圖2所示:
∵AD平分∠BAC,
∴∠CAD=∠GAD,
∵AD⊥CD,
∴∠ADC=∠ADG=90°,
在△ADC和△ADG中,
,
∴△ADC≌△ADG(ASA),
∴CD=GD,
即CG=2CD,
∵∠BAC=45°,AB=BC,
∴∠ABC=90°,
∴∠CBG=90°,
∴∠G+∠BCG=90°,
∵∠G+∠BAE=90°,
∴∠BAE=∠BCG,
在△ABE和△CBG中,
∴△ADC≌△CBG(ASA),
∴AE=CG=2CD.
(3)拓展延伸:
證明:作DG⊥BC于點(diǎn)H,交CE的延長線于G,
∵∠BAC=45°,AB=BC,
∴AB⊥BC,
∴DG∥AB,
∴∠GDC=∠BAC=45°,
∴∠EDC=∠BAC=22.5°=∠EDG,DH=CH,
又∵DE⊥CE,
∴∠DEC=∠DEG=90°,
在△DEC和△DEG中,
∴△DEC≌△DEG(ASA),
∴DC=DG,CG=2CE,
∵∠DHF=∠CEF=90°,∠DFH=∠CFE,
∴∠FDH=∠GCH,
在△DHF和△CHG中,
∴△DHF≌△CHG(ASA),
∴DF=CG=2CE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DBE中,BC=BE,還需再添加兩個條件才能使△ABC≌△DBE,則不能添加的一組條件是( )
A. AB=DB,∠ A=∠ D B. DB=AB,AC=DE C. AC=DE,∠C=∠E D. ∠ C=∠ E,∠ A=∠ D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C,E是直線l兩側(cè)的點(diǎn),以C為圓心,CE長為半徑畫弧交l于A,B兩點(diǎn),又分別以A,B為圓心,大于 AB的長為半徑畫弧,兩弧交于點(diǎn)D,連接CA,CB,CD,下列結(jié)論不一定正確的是( )
A.CD⊥l
B.點(diǎn)A,B關(guān)于直線CD對稱
C.點(diǎn)C,D關(guān)于直線l對稱
D.CD平分∠ACB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2ax+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C(0,3),tan∠OAC= .
(1)求拋物線的解析式;
(2)點(diǎn)H是線段AC上任意一點(diǎn),過H作直線HN⊥x軸于點(diǎn)N,交拋物線于點(diǎn)P,求線段PH的最大值;
(3)點(diǎn)M是拋物線上任意一點(diǎn),連接CM,以CM為邊作正方形CMEF,是否存在點(diǎn)M使點(diǎn)E恰好落在對稱軸上?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中(AD>AB),點(diǎn)E是BC上一點(diǎn),且DE=DA,AF⊥DE,垂足為點(diǎn)F,在下列結(jié)論中,不一定正確的是( 。
A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1(注:與圖2完全相同),二次函數(shù)y= x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該二次函數(shù)的解析式;
(2)設(shè)該拋物線的頂點(diǎn)為D,求△ACD的面積(請在圖1中探索);
(3)若點(diǎn)P,Q同時從A點(diǎn)出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運(yùn)動,其中一點(diǎn)到達(dá)端點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動,當(dāng)P,Q運(yùn)動到t秒時,△APQ沿PQ所在的直線翻折,點(diǎn)A恰好落在拋物線上E點(diǎn)處,請直接判定此時四邊形APEQ的形狀,并求出E點(diǎn)坐標(biāo)(請在圖2中探索).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com