【題目】如圖,拋物線與x軸交于點A,點B,與y軸交于點C,點B坐標為(6,0),點C坐標為(0,6),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接BD.

(1)求拋物線的解析式及點D的坐標;

(2)點F是拋物線上的動點,當FBA=BDE時,求點F的坐標;

(3)若點M是拋物線上的動點,過點M作MNx軸與拋物線交于點N,點P在x軸上,點Q在平面內,以線段MN為對角線作正方形MPNQ,請直接寫出點Q的坐標.

【答案】(1),D(2,8);(2)F(﹣1,)或(﹣3,;(3)Q(2,)或(2,).

【解析】(1)將點B(6,0)、C(0,6)代入中,得:,解得:,拋物線的解析式為

=,點D的坐標為(2,8).

(2)設線段BF與y軸交點為點F′,設點F′的坐標為(0,m),如圖1所示.

∵∠F′BO=FBA=BDE,F′OB=BED=90°,∴△F′BO∽△BDE,

點B(6,0),點D(2,8),點E(2,0),BE=6﹣4=4,DE=8﹣0=8,OB=6,OF′=OB=3,點F′(0,3)或(0,﹣3).

設直線BF的解析式為y=kx±3,則有0=6k+3或0=6k﹣3,解得:k=﹣或k=,直線BF的解析式為.聯(lián)立直線BF與拋物線的解析式得:①或②,解方程組①得:(舍去),點F的坐標為(﹣1,);

解方程組②得:(舍去),span>∴點F的坐標為(﹣3,).

綜上可知:點F的坐標為(﹣1,)或(﹣3,).

(3)設對角線MN、PQ交于點O′,如圖2所示.

點M、N關于拋物線對稱軸對稱,且四邊形MPNQ為正方形,點P為拋物線對稱軸與x軸的交點,點Q在拋物線對稱軸上,設點Q的坐標為(2,2n),則點M的坐標為(2﹣n,n).

點M在拋物線的圖象上,,即,解得:=,=點Q的坐標為(2,)或(2,).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=BC=4,AO=BOP是射線CO上的一個動點,AOC=60°,則當PAB為直角三角形時,AP的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】相反數(shù)等于它本身的數(shù)是

A. -1 B. 0 C. 1 D. 01

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市2009年元旦的最高氣溫為2℃,最低氣溫為-8℃,那么這天的最高氣溫比最低氣溫高(
A.-10℃
B.-6℃
C.6℃
D.10℃

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1(注:與圖2完全相同),二次函數(shù)的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸交于點C.

(1)求該二次函數(shù)的解析式;

(2)設該拋物線的頂點為D,求ACD的面積(請在圖1中探索);

(3)若點P,Q同時從A點出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運動,其中一點到達端點時,另一點也隨之停止運動,當P,Q運動到t秒時,APQ沿PQ所在的直線翻折,點A恰好落在拋物線上E點處,請直接判定此時四邊形APEQ的形狀,并求出E點坐標(請在圖2中探索).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=x+2的圖象不經(jīng)過的象限是(  )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一矩形紙片沿一條直線剪成兩個多邊形,那么這兩個多邊形的內角和之和不可能是( 。
A.360°
B.540°
C.720°
D.900°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將正比例函數(shù)y=2x的圖象向上平移3個單位,所得的直線不經(jīng)過第象限.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程x2﹣x﹣1=0的根的情況為( 。
A.有兩個不相等的實數(shù)根
B.有兩個相等的實數(shù)根
C.只有一個實數(shù)根
D.沒有實數(shù)根

查看答案和解析>>

同步練習冊答案