三角形的外角的性質是________;________.

三角形的一個外角等于與它不相鄰的兩個內角和    三角形的一個外角大于任何一個與它不相鄰的內角
分析:準確運用語言敘述三角形的外角的性質.
解答:三角形的外角性質是:三角形的一個外角等于與它不相鄰的兩個內角和;
三角形的一個外角大于任何一個與它不相鄰的內角.
點評:本題考查三角形外角的性質的語言敘述,是需要熟記的內容,比較簡單.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

27、三角形的外角的性質是
三角形的一個外角等于與它不相鄰的兩個內角和
三角形的一個外角大于任何一個與它不相鄰的內角

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

等腰三角形的性質
(1)等腰三角形的兩個底角
相等
相等
(簡稱“等邊對等角”).
(2)等腰三角形的頂角平分線、底邊上的
、底邊上的
中線
中線
相互重合.
(3)等腰三角形是軸對稱圖形,底邊上的中線(頂角平分線、底邊上的高)所在直線就是它的
對稱軸
對稱軸

(4)等腰三角形兩腰上的高、中線分別相等,兩底角的平分線也
相等
相等

(5)等腰三角形一腰上的高與底邊的夾角是頂角的
1
2
1
2

(6)等腰三角形頂角的外角平分線平行于這個三角形的
底邊
底邊

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:047

如圖,在△ABC中,∠BAC與∠ABC的平分線AE、BE相交于點E,延長AE交△ABC外接圓于D,連結BDCD、CE,且∠BDA = 60o.

求證:△BDE是等邊三角形.

撓旅媸切∨艉托∶韉慕馓饉悸罰?/P>

  他們都用到了三角形的外角與內角的關系,及AEBE的性質,但小鵬是先證∠DBE=DEB;再由∠BDA=60o 得△BDE是等邊三角形;小明用了三角形的內角和,算得∠BED=60o,再由∠BDA=60o 得△BDE是等邊三角形.

王老師的評價是:他們的思路都很好. ?/P>

現(xiàn)請你完成本題的證明,只要求寫出一種證法,可參考他們的思路。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

【考點】菱形的性質;全等三角形的判定與性質;等邊三角形的判定與性質.

【分析】根據(jù)菱形的四條邊都相等,先判定△ABD是等邊三角形,再根據(jù)菱形的性質可得∠BDF=∠C=60°,再求出DF=CE,然后利用“邊角邊”即可證明△BDF≌△DCE,從而判定①正確;根據(jù)全等三角形對應角相等可得∠DBF=∠EDC,然后利用三角形的一個外角等于與它不相鄰的兩個內角的和可以求出∠DMF=∠BDC=60°,再根據(jù)平角等于180°即可求出∠BMD=120°,從而判定②正確;根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和以及平行線的性質求出∠ABM=∠ADH,再利用“邊角邊”證明△ABM和△ADH全等,根據(jù)全等三角形對應邊相等可得AH=AM,對應角相等可得∠BAM=∠DAH,然后求出∠MAH=∠BAD=60°,從而判定出△AMH是等邊三角形,判定出③正確;根據(jù)全等三角形的面積相等可得△AMH的面積等于四邊形ABMD的面積,然后判定出④錯誤.

【解答】在菱形ABCD中,∵AB=BD,

∴AB=BD=AD,

∴△ABD是等邊三角形,

∴根據(jù)菱形的性質可得∠BDF=∠C=60°,

∵BE=CF,

∴BC-BE=CD-CF,

即CE=DF,

在△BDF和△DCE中,CE=DF;∠BDF=∠C=60°;BD=CD,

∴△BDF≌△DCE(SAS),故①小題正確;

∴∠DBF=∠EDC,

∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,

∴∠BMD=180°-∠DMF=180°-60°=120°,故②小題正確;

∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,

∴∠DEB=∠ABM,

又∵AD∥BC,

∴∠ADH=∠DEB,

∴∠ADH=∠ABM,

在△ABM和△ADH中,AB=AD;∠ADH=∠ABM;DH=BM,

∴△ABM≌△ADH(SAS),

∴AH=AM,∠BAM=∠DAH,

∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,

∴△AMH是等邊三角形,故③小題正確;

∵△ABM≌△ADH,

∴△AMH的面積等于四邊形ABMD的面積,

又∵△AMH的面積=AM·AM=AM2,

∴S四邊形ABMDAM2,S四邊形ABCD≠S四邊形ABMD,故④小題錯誤,

綜上所述,正確的是①②③共3個.

故選C.

【點評】本題考查了菱形的性質,全等三角形的判定與性質,等邊三角形的判定與性質,題目較為復雜,特別是圖形的識別有難度,從圖形中準確確定出全等三角形并找出全等的條件是解題的關鍵.

查看答案和解析>>

同步練習冊答案