【題目】將點A(3,1)繞原點O逆時針旋轉(zhuǎn)90°到點B,則點B的坐標(biāo)為__________________.
【答案】(-1,3)
【解析】
過點A作AC⊥x軸于點C,過點B作BD⊥y軸于點D,根據(jù)題目已知條件可證得△ACO≌△BDO,利用全等的性質(zhì)可以得到AC=BD,OD=OC,從而得到B點的坐標(biāo).
解:如圖所示,過點A作AC⊥x軸于點C,過點B作BD⊥y軸于點D,
由旋轉(zhuǎn)的性質(zhì)可知:AO=BO,
∵∠AOB=90°,
∴∠AOD+∠DOB=90°,
∵∠AOC+∠AOD=90°,
∴∠AOC=∠BOD,
在△ACO和△BDO中,
∴△ACO≌△BDO(AAS),
∴AC=BD,OD=OC,
∵A(3,1),
∴BD=1,OD=3,
∴B(-1,3).
故答案為:(-1,3).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AD⊥BC 于點 D,點 E 為BD邊上一點,過點 E 作 EG∥AD,分別交 AB 和 CA 的延長線于點 F,G,∠AFG=∠G.
(1)證明:△ABD≌△ACD
(2)若∠B=40°,直接寫出∠FAG= °
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】折紙中的數(shù)學(xué):打開本指書刊幅面的規(guī)格大。鐖D①,將一張矩形印刷用紙對折后可以得到2開紙,再對折得到4開紙,以此類推可以得到8開紙、16開紙……
若這張矩形印刷用紙的短邊長為a.
(1)如圖②,若將這張矩形印刷用紙ABCD(AB>BC)進(jìn)行折疊,使得BC與AB重合,點C落在點F處,得到折痕BE;展開后,再次折疊該紙,使點A落在E處,此時折痕恰好經(jīng)過點B,得到折痕BG,求的值.
(2)如圖③,②中的矩形紙片ABCD折成2開紙BCIH和4開紙AMNH,它們的對角線分別是HC、HM.說明HC⊥HM.
(3)將圖①中的2開紙、4開紙、8開紙和16開紙按如圖④所示的方式擺放,依次連接點A、B、M、I,則四邊形ABMI的面積是 .(用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC在平面直角坐標(biāo)系中的位置如圖①所示,A點坐標(biāo)為(﹣4,0),B點坐標(biāo)為(6,0),點D為BC的中點,點E為線段AB上一動點,連接DE經(jīng)過點A、B、C三點的拋物線的解析式為.
(1)求拋物線的解析式;
(2)如圖①,將△ADE以DE為軸翻折,點A的對稱點為點G,當(dāng)點G恰好落在拋物線的對稱軸上時,求G點的坐標(biāo);
(3)如圖②,當(dāng)點E在線段AB上運(yùn)動時,拋物線的對稱軸上是否存在點F,使得以C、D、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列兩段材料,回答問題:
材料一:A(x1.y1),B(x2.y2)的中點坐標(biāo)為(,) 例如,點(1,5),(3,-1)的中點坐標(biāo)為(,),即(2, 2)
材料二:如圖1,正比例函數(shù)l1:y=k1x和l2:y=k2x的圖像相互垂直,分別在l1和l2上取點A、B,使得AO=BO.分別過點A、B作x軸的垂線,垂足分別為點C、D.顯然△AOC≌△ OBD.設(shè)OC=BD=a,AC=OD=b.則A(-a,b),B(b,a).于是,所以k1k2的值為一個常數(shù).
(1)在材料二中,k1k2=____ (寫出這個常數(shù)具體的值) ;
(2)如圖,在矩形OBAC中A(4,2),點D是OA中點,用兩段材料的結(jié)論,求點D的坐標(biāo)和OA的垂直平分線l的解析式;
(3)若點C’ 與點C關(guān)于OA對稱,用兩段材料的結(jié)論,求點C'的坐標(biāo),
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖一段拋物線:y=﹣x(x﹣3)(0≤x≤3),記為C1,它與x軸交于點O和A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3,如此進(jìn)行下去,直至得到C10,若點P(28,m)在第10段拋物線C10上,則m的值為( 。
A. 1 B. ﹣1 C. 2 D. ﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=10,BC=8,AC=6.點D在AB邊上(不包括端點),DE⊥AC,DF⊥BC,垂足分別為點E和點F,連結(jié)EF.
(1)判斷四邊形DECF的形狀,并證明;
(2)線段EF是否存在最小值?如果存在,請求出最小值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角標(biāo)系中,△ABC的三個頂點坐標(biāo)為A(-3,1)、B(-4,-3)、C(-2,-4),△ABC繞原點順時針旋轉(zhuǎn)180°,得到△A1B1C1再將△A1B1C1向左平移5個單位得到△A2B2C2.
(1)畫出△A1B1C1,并寫出點A的對應(yīng)點A1的坐標(biāo);
(2)畫出△A2B2C2,并寫出點A的對應(yīng)點A2的坐標(biāo);
(3)P(a,b)是△ABC的邊AC上一點,△ABC經(jīng)旋轉(zhuǎn),平移后點P的對應(yīng)點分別為P1、P2,請直接寫出點P2的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com