【題目】如圖,在△ABC中,AB=BC,以AB為直徑的⊙O交AC于點(diǎn)D,過(guò)D作直線(xiàn)DE垂直BC于F,且交BA的延長(zhǎng)線(xiàn)于點(diǎn)E.

(1)求證:直線(xiàn)DE是⊙O的切線(xiàn);
(2)若cos∠BAC= ,⊙O的半徑為6,求線(xiàn)段CD的長(zhǎng).

【答案】
(1)

證明:連接BD、OD,

∵AB是⊙O的直徑,

∴∠ADB=90°,即BD⊥AC,

∵BA=BC,

∴D為AC中點(diǎn),又O是AB中點(diǎn),

∴OD為△ABC的中位線(xiàn),

∴OD∥BC,

∴∠BFE=∠ODE,

∵DE⊥BC,

∴∠BFE=90°,

∴∠ODE=90°,

∴OD⊥DE,

∴直線(xiàn)DE是⊙O的切線(xiàn)


(2)

解:

∵⊙O的半徑為6,

∴AB=12,

在Rt△ABD中,cos∠BAC= =

∴AD=4,

由(1)知BD是△ABC的中線(xiàn),

∴CD=AD=4.


【解析】(1)連接BD、OD,由AB為圓O的直徑,利用直徑所對(duì)的圓周角為直角得到BD與AC垂直,又BA=BC,利用等腰三角形的三線(xiàn)合一性質(zhì)得到D 為AC的中點(diǎn),又O為AB的中點(diǎn),可得出OD為三角形ABC的中位線(xiàn),利用三角形中位線(xiàn)定理得到OD與BC平行,由EF垂直于BC,得到EF垂直于OD, 可得出EF為圓O的切線(xiàn);(2)由圓的半徑為6,求出直徑AB為12,在直角三角形ABD中,由cos∠BAC的值及AB的長(zhǎng),求出AD的長(zhǎng),再由第一問(wèn) 得到D為AC的中點(diǎn),得到CD=AD,即可求出CD的長(zhǎng).
【考點(diǎn)精析】本題主要考查了圓周角定理和切線(xiàn)的判定定理的相關(guān)知識(shí)點(diǎn),需要掌握頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半;切線(xiàn)的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,根據(jù)2013﹣2017年某市財(cái)政總收入(單位:億元)統(tǒng)計(jì)圖所提供的信息,下列判斷正確的是( 。

A. 2013~2017年財(cái)政總收入呈逐年增長(zhǎng)

B. 預(yù)計(jì)2018年的財(cái)政總收入約為253.43億元

C. 2014~2015年與2016~2017年的財(cái)政總收入下降率相同

D. 2013~2014年的財(cái)政總收入增長(zhǎng)率約為6.3%

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形的頂點(diǎn)C與原點(diǎn)O重合,點(diǎn)By軸的正半軸上,點(diǎn)A在反比例函數(shù)的圖象上,點(diǎn)D的坐標(biāo)為.將菱形ABCD沿x軸正方向平移____個(gè)單位,可以使菱形的另一個(gè)頂點(diǎn)恰好落在該函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形A1B1B2C1 , A2B2B3C2 , A3B3B4C3 , …,AnBnBn+1Cn , 按如圖所示放置,使點(diǎn)A1、A2、A3、A4、、An在射線(xiàn)OA上,點(diǎn)B1、B2、B3、B4、、Bn在射線(xiàn)OB上.若∠AOB=45°,OB1=1,圖中陰影部分三角形的面積由小到大依次記作S1 , S2 , S3 , …,Sn , 則Sn=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】端午節(jié)期間,小明、小亮等同學(xué)隨家長(zhǎng)一行共12人到某公園游玩,成人門(mén)票每張40元,學(xué)生門(mén)票5折優(yōu)惠,小明直接去窗口買(mǎi)票需要400元.

(1)他們共去了幾個(gè)成人,幾個(gè)學(xué)生?

(2)小亮從美團(tuán)網(wǎng)看到訂團(tuán)體票信息,9人以上(含9人)的團(tuán)體訂票按成人價(jià)8.5折優(yōu)惠,請(qǐng)你幫助策劃,用何種方式購(gòu)票最省錢(qián),給出方案并計(jì)算出票價(jià)總數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,將兩條等寬的紙條重疊在一起,得到四邊形,若,則___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC中,AB=20,AC=15,BC邊上的高為12,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上、三點(diǎn)所代表的數(shù)分別是、,且.若下列選項(xiàng)中,有一個(gè)表示、三點(diǎn)在數(shù)軸上的位置關(guān)系,則此選項(xiàng)為何?(

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(﹣3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求這個(gè)二次函數(shù)的關(guān)系解析式;
(2)點(diǎn)P是直線(xiàn)AC上方的拋物線(xiàn)上一動(dòng)點(diǎn),是否存在點(diǎn)P,使△ACP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;

(3)在平面直角坐標(biāo)系中,是否存在點(diǎn)Q,使△BCQ是以BC為腰的等腰直角三角形?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由;
(4)點(diǎn)Q是直線(xiàn)AC上方的拋物線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)Q作QE垂直于x軸,垂足為E.是否存在點(diǎn)Q,使以點(diǎn)B、Q、E為頂點(diǎn)的三角形與△AOC相似?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由;
(5)點(diǎn)M為拋物線(xiàn)上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)Q,使以A、C、M、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案