已知一次函數(shù)y1=x+m的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn).已知當(dāng)x>1時(shí),y1>y2;當(dāng)0<x<1時(shí),y1<y2.
(1)求一次函數(shù)的解析式;
(2)已知雙曲線在第一象限上有一點(diǎn)C到y(tǒng)軸的距離為3,求△ABC的面積.
(1)y1=x+5 (2)21
解析試題分析:(1)首先根據(jù)x>1時(shí),y1>y2,0<x<1時(shí),y1<y2確定點(diǎn)A的橫坐標(biāo),然后代入反比例函數(shù)解析式求出點(diǎn)A的縱坐標(biāo),從而得到點(diǎn)A的坐標(biāo),再利用待定系數(shù)法求直線解析式解答;
(2)根據(jù)點(diǎn)C到y(tǒng)軸的距離判斷出點(diǎn)C的橫坐標(biāo),代入反比例函數(shù)解析式求出縱坐標(biāo),從而得到點(diǎn)C的坐標(biāo),過點(diǎn)C作CD∥x軸交直線AB于D,求出點(diǎn)D的坐標(biāo),然后得到CD的長度,再聯(lián)立一次函數(shù)與雙曲線解析式求出點(diǎn)B的坐標(biāo),然后△ABC的面積=△ACD的面積+△BCD的面積,列式進(jìn)行計(jì)算即可得解.
解:(1)∵當(dāng)x>1時(shí),y1>y2;當(dāng)0<x<1時(shí),y1<y2,
∴點(diǎn)A的橫坐標(biāo)為1,
代入反比例函數(shù)解析式,=y,
解得y=6,
∴點(diǎn)A的坐標(biāo)為(1,6),
又∵點(diǎn)A在一次函數(shù)圖象上,
∴1+m=6,
解得m=5,
∴一次函數(shù)的解析式為y1=x+5;
(2)∵第一象限內(nèi)點(diǎn)C到y(tǒng)軸的距離為3,
∴點(diǎn)C的橫坐標(biāo)為3,
∴y==2,
∴點(diǎn)C的坐標(biāo)為(3,2),
過點(diǎn)C作CD∥x軸交直線AB于D,
則點(diǎn)D的縱坐標(biāo)為2,
∴x+5=2,
解得x=﹣3,
∴點(diǎn)D的坐標(biāo)為(﹣3,2),
∴CD=3﹣(﹣3)=3+3=6,
點(diǎn)A到CD的距離為6﹣2=4,
聯(lián)立,
解得(舍去),,
∴點(diǎn)B的坐標(biāo)為(﹣6,﹣1),
∴點(diǎn)B到CD的距離為2﹣(﹣1)=2+1=3,
S△ABC=S△ACD+S△BCD=×6×4+×6×3=12+9=21.
考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.
點(diǎn)評:本題考查了反比例函數(shù)圖象與一次函數(shù)圖象的交點(diǎn)問題,根據(jù)已知條件先判斷出點(diǎn)A的橫坐標(biāo)是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
6 | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com