【題目】如圖所示,若△ABC內(nèi)一點P滿足∠PAC=PBA=PCB,則點P為△ABC的布洛卡點,三角形的布洛卡點是法國數(shù)學家長數(shù)學教育家克洛爾于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當時的人們所注意,1875年,布洛卡點被一個數(shù)學愛好者法國軍官布洛卡重新發(fā)現(xiàn),并用他的名字命名.問題:已知在等腰直角三角形DEF中,∠EDF=90°,若點Q為△DEF的布洛卡點,DQ=1,則EQ+FQ=______________ .

【答案】

【解析】

先根據(jù)題意得∠2=3,再證明△DQF∽△FQE,然后運用相似三角形的性質(zhì)即可求出結(jié)果.

解:如圖,在等腰直角△DEF中,∠EDF90°,DE=DF,∠1=2=3,

∵∠1+QEF=3+DFQ=45°,

∴∠QEF=DFQ,

∵∠2=3,

∴△DQF∽△FQE,

===,

DQ1,

FQ=,EQ=2,

EQ+FQ.

故答案為:.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列材料,然后解答問題.

材料:從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線例如:如圖AD把△ABC分成△ABD與△ADC,若△ABD是等腰三角形,且△ADC∽△BAC,那么AD就是△ABC的完美分割線.

解答下列問題:

1)如圖,在△ABC中,∠B40°,AD是△ABC的完美分割線,且△ABD是以AD為底邊的等腰三角形,則∠CAD   度.

2)在△ABC中,∠B42°,AD是△ABC的完美分割線,且△ABD是等腰三角形,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,, ,,,點上,于點,于點,當時,________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當陽光與水平線成45°角時,測得鐵塔AB落在斜坡上的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點E,F(xiàn)DC的中點,連結(jié)EF、BF,下列結(jié)論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB;④∠CFE=3DEF,其中正確結(jié)論的個數(shù)共有( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的對稱軸為直線,且經(jīng)、兩點.

求拋物線的解析式;

在拋物線的對稱軸上,是否存在點,使它到點的距離與到點的距離之和最小,如果存在求出點的坐標,如果不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小亮為了測量校園里教學樓AB的高度,將測角儀CD豎直放置在與教學樓水平距離為18m的地面上,若測角儀的高度為1.5m,測得教學樓的頂部A處的仰角為30°,則教學樓的高度是(    

A.55.5mB.54mC.19.5mD.18m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,分別是的中點.

求證:四邊形是菱形

如果,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO直徑,ACO的弦,過O外的點DDEOA于點E,交AC于點F,連接DC并延長交AB的延長線于點P,且D=2∠A,作CHAB于點H

1)判斷直線DCO的位置關(guān)系,并說明理由;

2)若HB=2cosD=,請求出AC的長.

查看答案和解析>>

同步練習冊答案