【題目】如圖,在中,,,,點(diǎn)上,于點(diǎn),于點(diǎn),當(dāng)時(shí),________

【答案】3

【解析】

如圖作PQABQ,PRBCR.由△QPE∽△RPF,推出==2可得PQ=2PR=2BQ,PQBC,可得AQQPAP=ABBCAC=345設(shè)PQ=4x,AQ=3x,AP=5x,BQ=2x,可得2x+3x=3,求出x即可解決問(wèn)題

如圖,PQABQPRBCR

∵∠PQB=QBR=BRP=90°,∴四邊形PQBR是矩形,∴∠QPR=90°=MPN,∴∠QPE=RPF,∴△QPE∽△RPF,==2,PQ=2PR=2BQ

PQBC,AQQPAP=ABBCAC=345,設(shè)PQ=4x,AQ=3xAP=5x,BQ=2x,2x+3x=3,x=,AP=5x=3

故答案為:3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2bxc(a≠0)的頂點(diǎn)和該拋物線與y軸的交點(diǎn)在一次函數(shù)ykx1(k≠0)的圖象上,它的對(duì)稱(chēng)軸是x1.有下列四個(gè)結(jié)論,①. abc0; . a<-;③. a=-k;④. 當(dāng)0x1時(shí),axbk,其中正確結(jié)論的個(gè)數(shù)是( )

A.1;B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且對(duì)稱(chēng)軸為x1,點(diǎn)B坐標(biāo)為(﹣1,0),則下面的四個(gè)結(jié)論,其中正確的個(gè)數(shù)為( 。

2a+b04a2b+c0ac0④當(dāng)y0時(shí),﹣1x4

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線x軸交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,CDx軸交拋物線于點(diǎn)DM為拋物線的頂點(diǎn).

1)求點(diǎn)A、B、C的坐標(biāo);

2)設(shè)動(dòng)點(diǎn)N(-2,n),求使MNBN的值最小時(shí)n的值;

3P是拋物線上一點(diǎn),請(qǐng)你探究:是否存在點(diǎn)P,使以P、AB為頂點(diǎn)的三角形與△ABD相似,(△PAB與△ABD不重合)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將等腰直角三角形ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)15°后得到△AB′C′,若AC=1,則圖中陰影部分的面積為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù),為常數(shù)).

1)當(dāng),時(shí),求二次函數(shù)的最小值;

2)當(dāng)時(shí),若在函數(shù)值的情況下,只有一個(gè)自變量的值與其對(duì)應(yīng),求此時(shí)二次函數(shù)的解析式;

3)當(dāng)時(shí),若在自變量的值滿(mǎn)足的情況下,與其對(duì)應(yīng)的函數(shù)值的最小值為21,求此時(shí)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtAOB中,∠AOB=90°,OA=3,OB=2,將RtAOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得RtFOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長(zhǎng)為半徑畫(huà)弧AF和弧DF,連接AD,則圖中陰影部分面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,若△ABC內(nèi)一點(diǎn)P滿(mǎn)足∠PAC=PBA=PCB,則點(diǎn)P為△ABC的布洛卡點(diǎn),三角形的布洛卡點(diǎn)是法國(guó)數(shù)學(xué)家長(zhǎng)數(shù)學(xué)教育家克洛爾于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當(dāng)時(shí)的人們所注意,1875年,布洛卡點(diǎn)被一個(gè)數(shù)學(xué)愛(ài)好者法國(guó)軍官布洛卡重新發(fā)現(xiàn),并用他的名字命名.問(wèn)題:已知在等腰直角三角形DEF中,∠EDF=90°,若點(diǎn)Q為△DEF的布洛卡點(diǎn),DQ=1,則EQ+FQ=______________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊△ABC的邊長(zhǎng)為8,E是邊AC中點(diǎn),點(diǎn)D、P分別在邊AB、BC上(BPPC),且BD3.∠DPE60°.求BP的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案