精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在矩形ABCD中,點E,F分別在邊AB,BC上,且AE= AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BP交EF于點Q,對于下列結論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是(
A.①②
B.②③
C.①③
D.①④

【答案】D
【解析】解:∵AE= AB, ∴BE=2AE,
由翻折的性質得,PE=BE,
∴∠APE=30°,
∴∠AEP=90°﹣30°=60°,
∴∠BEF= (180°﹣∠AEP)= (180°﹣60°)=60°,
∴∠EFB=90°﹣60°=30°,
∴EF=2BE,故①正確;
∵BE=PE,
∴EF=2PE,
∵EF>PF,
∴PF<2PE,故②錯誤;
由翻折可知EF⊥PB,
∴∠EBQ=∠EFB=30°,
∴BE=2EQ,EF=2BE,
∴FQ=3EQ,故③錯誤;
由翻折的性質,∠EFB=∠EFP=30°,
∴∠BFP=30°+30°=60°,
∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,
∴∠PBF=∠PFB=60°,
∴△PBF是等邊三角形,故④正確;
綜上所述,結論正確的是①④.
故選:D.

求出BE=2AE,根據翻折的性質可得PE=BE,再根據直角三角形30°角所對的直角邊等于斜邊的一半求出∠APE=30°,然后求出∠AEP=60°,再根據翻折的性質求出∠BEF=60°,根據直角三角形兩銳角互余求出∠EFB=30°,然后根據直角三角形30°角所對的直角邊等于斜邊的一半可得EF=2BE,判斷出①正確;利用30°角的正切值求出PF= PE,判斷出②錯誤;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判斷出③錯誤;求出∠PBF=∠PFB=60°,然后得到△PBF是等邊三角形,判斷出④正確.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,一學校(點M)距公路(直線l)的距離(MA)為1km,在公路上距該校2km處有一車站(點N),該校擬在公路上建一個公交車?奎c(點p),以便于本校職工乘車上下班,要求?空窘ㄔ贏N之間且到此校與車站的距離相等,請你計算?空镜杰囌镜木嚯x.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,AD是BC邊上的中線,AE∥BC,CE⊥AE,垂足為E.
(1)求證:△ABD≌△CAE;
(2)連接DE,線段DE與AB之間有怎樣的位置和數量關系?請證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為(
A.
B.2
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點A是直線y=x與反比例函數y= (k>0,x>0)的交點,B是y= 圖象上的另一點,BC//x軸,交y軸于點C.動點P從坐標原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C,過點P作PM⊥x軸,PN⊥y軸,垂足分別為M,N.設四邊形OMPN的面積為S,P點運動時間為t,則S關于t的函數圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,∠AOB是直角,∠AOC=40°,ON∠AOC的平分線,OM∠BOC的平分線.

1)求∠MON的大小.

2)當銳角∠AOC的大小發(fā)生改變時,∠MON的大小是否發(fā)生改變?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,Rt△AB′C′是由Rt△ABC繞點A順時針旋轉得到的,連接CC′交斜邊于點E,CC′的延長線交BB′于點F.
(1)證明:△ACE∽△FBE;
(2)設∠ABC=α,∠CAC′=β,試探索α、β滿足什么關系時,△ACE與△FBE是全等三角形,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,已知四邊形ABCD是正方形,對角線AC、BD相交于點E,以點E為頂點作正方形EFGH

1)如圖1,點A、D分別在EHEF上,連接BH、AF,直接寫出BHAF的數量關系;

2)將正方形EFGH繞點E順時針方向旋轉.

如圖2,判斷BHAF的數量關系,并說明理由;

如果四邊形ABDH是平行四邊形,請在備用圖中補全圖形;如果四方形ABCD的邊長為,求正方形EFGH的邊長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】國務院辦公廳2015年3月16日發(fā)布了《中國足球改革的總體方案》,這是中國足球歷史上的重大改革.為了進一步普及足球知識,傳播足球文化,我市舉行了“足球進校園”知識競賽活動,為了解足球知識的普及情況,隨機抽取了部分獲獎情況進行整理,得到下列不完整的統(tǒng)計圖表:

獲獎等次

頻數

頻率

一等獎

10

0.05

二等獎

20

0.10

三等獎

30

b

優(yōu)勝獎

a

0.30

鼓勵獎

80

0.40


請根據所給信息,解答下列問題:
(1)a= , b= , 且補全頻數分布直方圖;
(2)若用扇形統(tǒng)計圖來描述獲獎分布情況,問獲得優(yōu)勝獎對應的扇形圓心角的度數是多少?
(3)在這次競賽中,甲、乙、丙、丁四位同學都獲得一等獎,若從這四位同學中隨機選取兩位同學代表我市參加上一級競賽,請用樹狀圖或列表的方法,計算恰好選中甲、乙二人的概率.

查看答案和解析>>

同步練習冊答案