【題目】如圖,Rt△AB′C′是由Rt△ABC繞點A順時針旋轉得到的,連接CC′交斜邊于點E,CC′的延長線交BB′于點F.
(1)證明:△ACE∽△FBE;
(2)設∠ABC=α,∠CAC′=β,試探索α、β滿足什么關系時,△ACE與△FBE是全等三角形,并說明理由.

【答案】
(1)證明:∵Rt△AB′C′是由Rt△ABC繞點A順時針旋轉得到的,

∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,

∴∠CAB+∠BAC′=∠C′AB′+∠BAC′,即∠CAC′=∠BAB′,

∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,

∴∠ACC′=∠ABB′,

又∵∠AEC=∠FEB,

∴△ACE∽△FBE


(2)解:當β=2α時,△ACE≌△FBE.

在△ACC′中,

∵AC=AC′,

∴∠ACC′= = =90°﹣α,

在Rt△ABC中,

∠ACC′+∠BCE=90°,即90°﹣α+∠BCE=90°,

∴∠BCE=α,

∵∠ABC=α,

∴∠ABC=∠BCE,

∴CE=BE,

由(1)知:△ACE∽△FBE,

∴∠BEF=∠CEA,∠FBE=∠ACE,

又∵CE=BE,

∴△ACE≌△FBE


【解析】(1)欲證△ACE∽△FBE,通過觀察發(fā)現(xiàn)兩個三角形已經具備一組角對應相等,即∠AEC=∠FEB,此時,再證∠AC′C=∠ABB′即可.(2)欲證△ACE≌△FBE,由(1)知△ACE∽△FBE,只需證明CE=BE,由已知可證∠ABC=∠BCE=α,即證β=2α時,△ACE≌△FBE.
【考點精析】解答此題的關鍵在于理解相似三角形的判定的相關知識,掌握相似三角形的判定方法:兩角對應相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應成比例且夾角相等,兩三角形相似(SAS);三邊對應成比例,兩三角形相似(SSS),以及對旋轉的性質的理解,了解①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,CEABAB延長線于點E,點F為點B關于CE的對稱點,連接CF,分別延長DC,CF至點GH,使FH=CG,連接AGDH交于點P

(1)依題意補全圖1;

(2)猜想AGDH的數(shù)量關系并證明;

(3)若∠DAB=70°,是否存在點G,使得ADP為等邊三角形?若存在,求出CG的長;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的運算流程中,

(1)若輸入的數(shù)x=﹣4,則輸出的數(shù)y=   ;

(2)若輸出的數(shù)y=5,則輸入的數(shù)x=   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E,F(xiàn)分別在邊AB,BC上,且AE= AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BP交EF于點Q,對于下列結論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是(
A.①②
B.②③
C.①③
D.①④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,量角器的直徑與直角三角板ABC的斜邊AB重合,其中量角器0刻度線的端點N與點A重合,射線CP從CA處出發(fā)沿順時針方向以每秒2度的速度旋轉,CP與量角器的半圓弧交于點E,第35秒時,點E在量角器上對應的讀數(shù)是度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正五邊形ABCDE放入某平面直角坐標系后,若頂點A,B,C,D的坐標分別是(0,a),(﹣3,2),(b,m),(c,m),則點E的坐標是(
A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分別為E,F(xiàn).

(1)求證:ABE≌△CDF;

(2)若AC與BD交于點O,求證:AO=CO.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:像、、兩個含有二次根式的代數(shù)式相乘,積不含有二次根式,我們稱這兩個代數(shù)式互為有理化因式例如,、等都是互為有理化因式在進行二次根式計算時,利用有理化因式,可以化去分母中的根號.

例如;;

解答下列問題:

(1)________互為有理化因式,將分母有理化得________;

(2)計算:;

(3)己知有理數(shù)a、b滿足,求a、b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學完“有理數(shù)的運算”后,某中學七年級各班各選出5名學生組成一個代表隊,在數(shù)學方老師的組織下進行一次知識競賽,競賽規(guī)則是:每隊都分別給出50道題,答對一題得3分,不答或答錯一題倒扣1分

(1)如果2班代表隊最后得分142分,那么2班代表隊回答對了多少道題?

(2)1班代表隊的最后得分能為145分嗎?請簡要說明理由.

查看答案和解析>>

同步練習冊答案