【題目】如圖,∠ABD=∠ABC,補充一個條件,使得△ABD≌△ABC,則下列選項不符合題意的是( 。
A. ∠D=∠CB. ∠DAB=∠CABC. BD=BCD. AD=AC
【答案】D
【解析】
根據(jù)全等三角形的判定定理和已知條件“∠ABC=∠ABD,AB是公共邊”,結合選項,逐個驗證即可得出正確的判斷.
根據(jù)已知條件知:∠ABC=∠ABD,AB是公共邊;
A、如果補充已知條件∠D=∠C,則根據(jù)全等三角形的判定定理AAS可以知△ABD≌△ABC;故本選項正確;
B、如果補充已知條件∠DAB=∠CAB,則根據(jù)全等三角形的判定定理ASA可以知△ABD≌△ABC;故本選項正確;
C、如果補充已知條件BD=BC,則根據(jù)全等三角形的判定定理SAS可以知△ABD≌△ABC;故本選項正確;
D、如果補充已知條件AD=AC,則根據(jù)SSA不能判定△ABD≌△ABC;故本選項錯誤;
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方體的長BE=20cm,寬AB=10cm,高AD=15cm,點M在CH上,且CM=5cm,一只螞蟻如果要沿著長方體的表面從點A爬到點M,需要爬行的最短距離是多少?
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,∠BOC=80°,OE是∠BOC的角平分線,OF是OE的反向延長線.
(1)求∠2、∠3的度數(shù);
(2)說明OF平分∠AOD的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列調查適合做抽樣調查的是
A. 檢查一枚用于發(fā)射衛(wèi)星的運載火箭的各零部件
B. 對某社區(qū)的衛(wèi)生死角進行調查
C. 對某班學生進行6月5日式“世界環(huán)境日”知曉情況的調查
D. 對中學生目前的睡眠情況進行調查
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC與△DCE有公共頂點C,AB=CD,BC=CE,∠ABC=∠DCE=90°.
(1)如圖1,當點D在BC延長線上時.
①求證:△ABC≌△DCE.
②判斷AC與DE的位置關系,并說明理由.
(2)如圖2,△CDE從(1)中位置開始繞點C順時針旋轉,當點D落在BC邊上時停止.
①若∠A=60°,記旋轉的度數(shù)為,當為何值時,DE與△ABC一邊平行.
②如圖3,若AB=c, BC=a, AC=b, a>c,邊BC,DE交于點F,求整個運動過程中,F在BC上的運動路程(用含a, b, c的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,CD⊥AB于點D,BE平分∠ABC,且BE⊥AC于點E,與CD相交于點F,H是邊BC的中點,連接 DH與 BE相交于點 G,若GE=3,則BF=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.
(1)求坡底C點到大樓距離AC的值;
(2)求斜坡CD的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】21.(2013年四川攀枝花8分)某文具店準備購進甲,乙兩種鉛筆,若購進甲種鋼筆100支,乙種鉛筆50支,需要1000元,若購進甲種鋼筆50支,乙種鋼筆30支,需要550元.
(1)求購進甲,乙兩種鋼筆每支各需多少元;
(2)若該文具店準備拿出1000元全部用來購進這兩種鋼筆,考慮顧客需求,要求購進甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進貨方案;
(3)若該文具店銷售每支甲種鋼筆可獲利潤2元,銷售每支乙種鋼筆可獲利潤3元,在第(2)問的各種進貨方案中,哪一種方案獲利最大;最大利潤是多少元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com