如圖在梯形ABCD中,AD∥BC,E是梯形內(nèi)一點(diǎn),ED⊥AD,∠EBC=∠EDC,∠ECB=45°.
(1)求證:BE=CD;
(2)若梯形ABCD為等腰梯形且DE=3,tan∠DCB=4,試求四邊形ABED的周長(zhǎng).

【答案】分析:(1)利用作輔助線的方法,證明△BEF和△DCF全等,從而得到BE=CD,
(2)由tan∠DCB=4,根據(jù)給出的三角函數(shù)的定義,在△DCF中,tan∠DCB=,過(guò)A作AH⊥BC于H,
設(shè)EF=CF=x,代入求得x的值,從而求出CD的長(zhǎng),由三角形的全等,CD=BE,證明△AHB≌△DFC,四邊形ADFH是矩形,AD=HF,求得答案.
解答:解:(1)延長(zhǎng)DE交BC于F,
∵AD∥BC,
且ED⊥AD,
∴DE⊥BC,
又∵∠ECB=45°,
∴△ECF為等腰直角三角形.
∴EF=CF,((2分)
∴在△BEF和△DCF中
,
∴△BEF≌△DCF,(4分)
∴BE=CD;(5分)

(2)過(guò)A作AH⊥BC于H.
設(shè)EF=CF=x,
∵Rt△DCF中,
tan∠DCB=
,
x=1,
∴EF=CF=1,(6分)
∴DF=DE+EF=4,
∴BF=DF=4,
∴在Rt△DFC中,
,
∵四邊形ABCD為等腰梯形,
∴AB=CD=,
又∵△BEF≌△DCF,
∴BE=CD=,(7分)
又∵四邊形ABCD為等腰梯形,
∴AB=CD,
又∵AD∥BC且AH⊥BC,DF⊥BC,
∴AH=DF,
∴在Rt△AHB和△DFC中,
,
∴△AHB≌△DFC(HL),(8分)
∴BH=CF=1,
∴HF=BF-BH=4-1=3,(9分)
∴四邊形ABED的周長(zhǎng)為:AB+BE+DE+AD,
=,
=.(10分)
點(diǎn)評(píng):此題是一道梯形和函數(shù)綜合性的題目,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖在梯形ABCD中,AB=DC=10cm,AC與BD相交于G,且∠AGD=60°,設(shè)E為CG的中點(diǎn),F(xiàn)為AB的中點(diǎn),則EF的長(zhǎng)為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC的坡度i=3:4,動(dòng)點(diǎn)P從A出發(fā)以2厘米/秒的速度沿AB方向向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B出精英家教網(wǎng)發(fā)以3厘米/秒的速度沿B?C?D方向向點(diǎn)D運(yùn)動(dòng),兩個(gè)動(dòng)點(diǎn)同時(shí)出發(fā),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止.設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒.
(1)求邊BC的長(zhǎng);
(2)當(dāng)t為何值時(shí),PC與BQ相互平分;
(3)連接PQ,設(shè)△PBQ的面積為y,探求y與t的函數(shù)關(guān)系式,求t為何值時(shí),y有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖在梯形ABCD中,AD∥BC,E是梯形內(nèi)一點(diǎn),ED⊥AD,∠EBC=∠EDC,∠ECB=45°.
(1)求證:BE=CD;
(2)若梯形ABCD為等腰梯形且DE=3,tan∠DCB=4,試求四邊形ABED的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•宣城模擬)我們知道連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;通過(guò)證明可以得到“三角形的中位線平行于三角形的第三邊,且等于第三邊的一半”類似三角形中位線,我們把連接梯形兩腰中點(diǎn)的線段叫做梯形的中位線.如圖在梯形ABCD中,AD∥BC,點(diǎn)E,F(xiàn)分別是AB、CD的中點(diǎn),觀察EF的位置,聯(lián)想三角形中位線的性質(zhì),你能發(fā)現(xiàn)梯形的中位線有什么性質(zhì)?證明你的結(jié)論.
(2)如果點(diǎn)E分線段AB為
AE
EB
=
1
3
,EF∥BC交CD于F,AD=3,BC=5,請(qǐng)你利用第(1)的結(jié)論求出EF=
3.5
3.5
(直接填寫結(jié)果);
(3)如果點(diǎn)E分線段AB為
AE
EB
=
m
n
,EF∥BC交CD 于F,AD=a,BC=b,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在梯形ABCD中,AD∥BC,∠B=∠C,DE交BC于點(diǎn)E,AD=BE.
(1)AB=DE嗎?為什么?
(2)梯形ABCD是等腰梯形嗎?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案