【題目】如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E是邊AB上一點(diǎn),點(diǎn)P是對(duì)角線BD上一點(diǎn),且PE⊥PC.
⑴ 求證:PC=PE;
⑵ 若BE=2,求PB的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)
【解析】分析: 過(guò)點(diǎn)P作PF⊥AB,PG⊥BC,垂足分別為點(diǎn)F、G.證明△PFE≌△PGC即可.
設(shè)EF=x.根據(jù) △PFE≌△PGC .得到GC=EF=x. 由BE=2得:BF=x+2.
由正方形FBGP得:BG=x+2. BG+GC=6.列出方程,求出,在△PFB中,用勾股定理即可求出PB的長(zhǎng).
詳解:⑴ 過(guò)點(diǎn)P作PF⊥AB,PG⊥BC,垂足分別為點(diǎn)F、G.
∴ ∠PFB=∠PGB=∠PGC=90°,
∵ 四邊形ABCD是正方形,
∴ ∠A=∠ABC=90°,AB=AD=BC,
∴ ∠ABD=∠ADB=45°,四邊形FBGP是矩形,
∴ ∠FPB=90°-∠ABD=90°-45°=45°,
∴ ∠ABD=∠FPB,
∴ FP=FB,
∴ 矩形FBGP是正方形,
∴ PF=PG,∠FPG=90°,
∴ ∠FPG+∠EPG=90°,
∵ EP⊥PC,
∴ ∠EPC=90°,
∴ ∠GPC+∠EPG=90°,
∴ ∠FPG=∠GPC ,
∵ ∠FPG=∠GPC ,PF=PG,∠PFE=∠PGC,
∴△PFE≌△PGC(ASA)
∴ PE=PC.
(方法不唯一,酌情給分)
⑵ 設(shè)EF=x.
∵ △PFE≌△PGC .
∴ GC=EF=x.
由BE=2得:BF=x+2.
由正方形FBGP得:BG=x+2.
∵ BC=6,
∴ BG+GC=6.
∴ (x+2)+x=6,
解得:x=2.
∴ PF=BF=2+2=4 ,
△PFB中,∠PFB=90°,由勾股定理得: ,
∵ PB>0
∴
答:PB的長(zhǎng)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將下列各數(shù)填入相應(yīng)的括號(hào)里:
,5,,,0,8,-2,-0.7……
正數(shù)集合{________________________________________…};
負(fù)數(shù)集合{________________________________________…};
有理數(shù)集合{________________________________________…};
無(wú)理數(shù)集合{________________________________________…}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是( )
A.a>0
B.3是方程ax2+bx+c=0的一個(gè)根
C.a+b+c=0
D.當(dāng)x<1時(shí),y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,F在DE上,并且AF=CE.
(1)求證:四邊形ACEF是平行四邊形;
(2)當(dāng)∠B的大小滿足什么條件時(shí),四邊形ACEF是菱形?請(qǐng)回答并證明你的結(jié)論;
(3)四邊形ACEF有可能是正方形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形OABC放置在第一象限內(nèi),頂點(diǎn)A在x軸上,若頂點(diǎn)B的坐標(biāo)是(4,3),(1)請(qǐng)求出菱形邊長(zhǎng)OA的長(zhǎng)度.
(2)反比例函數(shù)經(jīng)過(guò)點(diǎn)C,請(qǐng)求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值,
(1)2x2y﹣[3xy2+2(xy2+2x2y)],其中x=,y=﹣2.
(2)已知a+b=4,ab=﹣2,求代數(shù)式(4a﹣3b﹣2ab)﹣(a﹣6b﹣ab)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列給出四個(gè)命題:
①直角三角形的兩邊是方程y2-7y+12=0的兩根,則它的第三邊是5;
②若一元二次方程ax2+bx+c=0(a≠0)的系數(shù)a,c異號(hào),則該方程有兩個(gè)不相等的實(shí)數(shù)根;
③若一元二次方程(m-2)x2+x+m2-4=0有一個(gè)根為0,那么m=±2;
④已知一元二次方程ax2+bx+c=0(a≠0)中a,b,c滿足a-b+c=0,4a+2b+c=0則方程的兩根為x1=-1,x2=2;其中真命題的是__________(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的頂點(diǎn)坐標(biāo)為A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐標(biāo)原點(diǎn)O為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°,得到△A′B′C′,點(diǎn)B′、C′分別是點(diǎn)B、C的對(duì)應(yīng)點(diǎn).
(1)求過(guò)點(diǎn)B′的反比例函數(shù)解析式;
(2)求線段CC′的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com