【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
【答案】(1)證明見解析;(2)69°.
【解析】試題分析:(1)根據(jù)已知條件易證∠BEO=∠1,根據(jù)等式的性質(zhì)可得∠AEC=∠BED,利用ASA即可證明△AEC≌△BED;(2)由△AEC≌△BED可得EC=ED,∠C=∠BDE;在△EDC中,根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可求得∠C的度數(shù),根據(jù)全等三角形的性質(zhì)即可求得∠BDE的度數(shù).
試題解析:
(1)證明:∵AE和BD相交于點O, ∴∠AOD=∠BOE.
在△AOD和△BOE中, ∠A=∠B,
∴∠BEO=∠2.
又∵∠1=∠2,
∴∠1=∠BEO, ∴∠AEC=∠BED.
在△AEC和△BED中,
∠A=∠B,AE=BE,∠AEC=∠BED,
∴△AEC≌△BED(ASA).
(2)∵△AEC≌△BED,
∴EC=ED,∠C=∠BDE.
在△EDC中, ∵EC=ED,∠1=42°,
∴∠C=∠EDC=69°,
∴∠BDE=∠C=69°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=∠D=60°,∠BAC=∠ACD=90°,點E為邊AB上一點,AB=3AE=3cm,動點P從B點出發(fā),以1cm/s的速度沿BC→CD→DA運動至A點停止,設(shè)運動時間為t秒.
(1)求證四邊形ABCD是平行四邊形;
(2)當△BEP為等腰三角形時,求的值;
(3)當t=4時,把△ABP沿直線AP翻折,得到△AFP,求△AFP與□ABCD 重疊部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以△ABC的一邊為邊畫等腰三角形,使得它的第三個頂點在△ABC的其他邊上,則可以畫出的不同的等腰三角形的個數(shù)最多為( 。
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點C在⊙O上,過點C作⊙O的切線交AB的延長線于點D,已知∠D=30°.
(1)求∠A的度數(shù);
(2)若點F在⊙O上,CF⊥AB,垂足為E,CF=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,OM平分∠BOC,ON平分∠AOC,
(1)若∠AOB=90°,∠AOC=30°,求∠MON的度數(shù);
(2)若(1)中改成∠AOB=60°,其他條件不變,求∠MON的度數(shù);
(3)若(1)中改成∠AOC=60°,其他條件不變,求∠MON的度數(shù);
(4)從上面結(jié)果中看出有什么規(guī)律?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩地相距300km,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地.如圖,線段OA表示貨車離甲地的距離y(km)與時間x(h)之間的函數(shù)關(guān)系,折線BCDE表示轎車離甲地的距離y(km)與時間x(h)之間的函數(shù)關(guān)系,根據(jù)圖象,解答下列問題:
(1)在CD段轎車停留了________小時;
(2)求線段DE對應的函數(shù)關(guān)系式;
(3)當轎車出發(fā)幾小時后兩車相距30km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以圓O為圓心,半徑為1的弧交坐標軸于A,B兩點,P是弧上一點(不與A,B重合),連接OP,設(shè)∠POB=α,則點P的坐標是
A. (sinα,sinα) B. (cosα,cosα) C. (cosα,sinα) D. (sinα,cosα)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com