【題目】如圖,一次函數的圖象與軸、軸分別相交于A、B兩點,且與反比例函數的圖象在第二象限交于點C.如果點A的坐標為(4,0),OA=2OB,點 B是AC的中點.
(1)求點C的坐標;
(2)求一次函數和反比例函數的解析式.
【答案】解:⑴作CD⊥軸于D,
∴CD∥BO.
∵OA=2OB,
∴OB=2.
∴.
∵點B是AC的中點,
∴O是AD的中點.
∴OD=OA=4,CD=2OB=4.
∴點C的坐標為.
⑵設反比例函數的解析式為,
∴.
∴所求反比例函數的解析式為.
設一次函數為,
∵A(4,0),C,
∴解得:.
∴所求一次函數的解析式為.
【解析】試題分析:(1)作CD⊥軸于D,可得CD∥BO.根據點A的坐標為(4,0),OA=2OB,求出B點坐標,根據點B是AC的中點,可知O是AD的中點.即可得到點C的坐標;(2)設反比例函數解析式為,代入C點坐標,解得即可;設一次函數的解析式y=kx+b,將點A、點C的坐標代入,運用待定系數法即可求出一次函數的解析式.
科目:初中數學 來源: 題型:
【題目】如圖所示,E、F分別是正方形ABCD的邊CD,AD上的點,且CE=DF,AE,BF相交于點O,下列結論①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四邊形DEOF中,錯誤的有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與實踐:
下面是一個有關平行四邊形和等邊三角形的小實驗,請根據實驗解答問題:
已知在□ABCD中,∠ABC=120°,點D又是等邊三角形DEF的一個頂點,DE與AB相交于點M,DF與BC相交于點N(不包括線段的端點).
(1)初步嘗試:
如圖①,若AB=BC,求證:BD=BM+BN;
(2)探究發(fā)現:
如圖②,若BC=2AB,過點D作DH⊥BC于點H,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y=kx+b的圖象經過A(-2,-1),B(1,3)兩點,并且交x軸于點C,交y軸于點D.
(1)求該一次函數的解析式;
(2)求點C和點D的坐標;
(3)求△AOB的面積。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A( ,0),B(0,2),則點B2016的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=2x+m(m>0)與x軸交于點A(-2,0),直線y=-x+n(n>0)與x軸、y軸分別交于B、C兩點,并與直線y=2x+m(m>0)相交于點D,若AB=4.
(1)求點D的坐標;
(2)求出四邊形AOCD的面積;
(3)若E為x軸上一點,且△ACE為等腰三角形,直接寫出點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根x1、x2 .
(1)求實數k的取值范圍.
(2)若方程兩實根x1、x2滿足x1+x2=﹣x1x2 , 求k的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com